BCCE

SUNDAY

WALC 1055

Assessment and Measurement in Research and Practice

- **3:45** Introductory Remarks.
- **3:50 1.** Assembling an assessment of cross-disciplinary practices: graphical representation, covariational and proportional reasoning, and explanation. **R. Gupta**, K.A. Bowe, M. Aikens, N. Altindis, C.F. Bauer
- **4:10 2.** Understanding Where an Item Lives: Designing and Detecting Item Environment Effects Including Internal Calibration of Student Data. **S. Nedungadi**, O. Michels, P.J. Kreke, J.R. Raker, K.L. Murphy
- **4:30 3.** Generalization of a method for the detection of item order effects: Implications for research and practice. **P.J. Kreke**, M.S. Reeves, K.Y. Neiles, O. Michels, T.C. Pentecost, J.R. Raker, K.L. Murphy
- **4:50 4.** Advanced Method for the Detection of Differential Item Functioning. **D.G. Schreurs**, K.L. Murphy
- **5:10** Closing Remarks.

Blended instruction design and assessment: Leveraging technology to promote adaptive learning for college chemistry

J. Chamberlain, J. J. Stewart, D. Yaron, Organizers, Presiding

3:45 Introductory Remarks.

3:50 5. The AHA! chemistry project: Improving learning outcomes for all general chemistry students through Active, Hybrid, Adaptive courses. **M. Blaser**, D. Doshi

4:10 6. OLI General Chemistry Courseware: High-Quality, Low-Cost Textbook and Homework System Replacement. **S. Raysor**

4:30 7. Improved learning outcomes from using the Open Learning Initiative (OLI) courseware in general chemistry. **D. Doshi**

4:50 8. Adaptive Learning in the Time of COVID: Lessons learn from an asynchronous ALEKS introductory chemistry course. **A.B. Kuzmishin Nagy**, L. Hibbard

5:10 Closing Remarks.

STEW 306

C.O.V.I.D.: Carrying Over Valuable Innovative Developments

E. G. Malina, Organizer, Presiding

3:45 Introductory Remarks.

- **3:50 9.** Design of "at-home" Laboratory Kits for Virtual General Chemistry Laboratories. **M. Abdel Latif**, K.C. Lanigan
- **4:10 10.** At Home Labs: Improving Students Lab Techniques Using Technique Video Quizzes. **F.E. Jacobsen**
- **4:30 11.** Enhancing In-Person Learning of the General Chemistry Laboratory Course at Brown University via the Innovation Created for Remote Learning During the Pandemic. **L. Wang**
- **4:50 12.** Design of an ACS Hands-on Laboratory Workshop for Increased Confidence and Knowledge Assessment. **M. Abdel Latif**, K.C. Lanigan, M.J. Mio, M. Livezey, M. Yousif
- **5:10** Closing Remarks.

WALC B093

Disrupting Grading

- R. D. Link, Organizer, Presiding
- 3:45 Introductory Remarks.
- **3:50 13.** Using specifications-based grading in the lower-level chemistry and biochemistry curriculum at a PUI: Course design considerations and qualitative impact on students, courses and instructors. **E.E. Wilson**, M.V. Wilson, P.M. Smith
- **4:10 14.** Prioritizing persistence: mastery-based grading and authentic assessments in a large, intro-level biochemistry class. **R. Branco**
- **4:30 15.** Towards a Specifications Grading Framework in an Advanced Biochemistry Course. **S.C. Silver**
- **4:50 16.** Mastering Organic Chemistry and Biochemistry at one's own pace: Use of specification grading in these classrooms. **K.M. Slunt**

5:10 Closing Remarks.

BRWN 1154

Engaging Students in Physical Chemistry

D. E. Gardner, C. M. Teague, Organizers, Presiding

3:45 Introductory Remarks.

3:50 17. What Does It Mean to "Understand" the Concepts and Mathematics in Physical Chemistry?. **E.M. Duffy**, M. Smiley, T.N. Chamberlain

4:10 18. Building engagement in the physical chemistry classroom with empathy, clear organization, and a focus on problem solving. **W.C. Duim**

4:30 19. Changes in Physical Chemistry Syllabi Focus Attributed to the Transition to Remote Instruction. **J. Donnelly**, **K. Winkelmann**

4:50 20. Building a New Physical Chemistry Sequence. **R.S. Thompson**

5:10 Closing Remarks.

WALC 1018

Improving implementation of innovative laboratory models

S. J. Gravelle, *Organizer*

D. I. Del Carlo, Presiding

3:45 Introductory Remarks.

3:50 21. Step-Wise Development of Process Skills, Collaboration, and Writing in General Chemistry Labs. **C.E. Flener-Lovitt**

4:10 22. Combining forces: SWH and POGIL-PCL in the Physical Chemistry laboratory. **S.J. Gravelle**

4:30 23. Revising a Standard Experiment to Incorporate Inquiry: NMR of the Keto-Enol System. **A. Grushow**

4:50 24. Assessing Shifts in Analytical Chemistry Faculty's Instructional Practices After Their Involvement in the MICRO Project. **A.L. Van Wyk**, M. Reyome, R.S. Cole

5:10 Closing Remarks.

WALC 1132

Innovations, challenges, and practices in large-enrollment laboratory courses

K. A. Gesmundo, Organizer, Presiding

3:45 Introductory Remarks.

3:50 25. The organic planner: Challenges and opportunities. **M. Patwardhan**, M. Ogbaje

4:10 26. Lessons learned from large-scale implementation of Undergraduate Laboratory Assistants Program during a pandemic. **L. Gustin**, S. Block, C. Wilkinson, L. Stoll

4:30 27. Critiquing Lab Technique Videos Prior to In Class Use. Can it Improve Technique?. **S. Tenney**, J. Casey, A.A. Russell

4:50 28. Lessons Learned from a Year of Specifications Grading in a Large-Enrollment General Chemistry Lab. L. Morkowchuk

5:10 Closing Remarks.

WALC 2087

Learning for All: Making Chemistry Instruction Accessible to Blind/ Low - Vision Students

A. T. DAgostino, Organizer, Presiding

3:45 Introductory Remarks.

3:50 29. Practical Guide to Accessible Chemistry Instruction for Blind and Low-Vision Students. **A.T. DAgostino**

4:10 30. Multiline Tactile Display: Braille for Future Chemists. A.E. Neybert

4:30 31. 3D tactile images to teach STEM courses to visually impaired and sighted students. **E. Hasper**, R. Windhorst, T. Hedgpeth, L. Van Tuyl, A. Gonzales, B. Martinez, H. Yu, Z. Farkas, D. Baluch

4:50 32. Customized 3D Printed Molecular Modeling Kits for use in Lecture Halls and with Visually Impaired Students. **A.C. Davis**, R. Virtue, J.M. Smith

5:10 Closing Remarks.

WALC 3087

STEM Persistence Amid a Pandemic

B. L. Gonzalez, S. Villafane-Garcia, *Organizers*J. Chan, *Organizer*, *Presiding*L. Ye, *Presiding*

3:45 Introductory Remarks.

3:50 33. Seeding Your Future Conference, taking a STEAM conference from inperson to virtual back to in-person again. **J.R. Cole**, H. Albright, K. Dartt, C. Melton, S. Murphy

4:10 34. Impact of the Phone A STEM Professional assignment on organic chemistry students' sense of belonging, career awareness, and career confidence. K. Babics, M. Schen, **S.E. Martin**

4:30 35. Development and Implementation of Mindset and Metacognitive Learning Strategies Workshops in a First-year Chemistry Course. **T. Nguyen**, J. Chan, S. Villafane-Garcia

4:50 36. Improving Teaching in Introductory Chemistry: Lesson Learned from Student Perspectives and Instructor Reflections in Remote Learning. **L. Ye**, J. Chan, P. Bahrami, D.F. Blanco, H.R. Thetford

5:10 Closing Remarks.

MONDAY

WALC 2087

Demystifying Spectroscopy: Methods, Innovations, and Best Practices for Teaching Spectroscopic Interpretation and Structure Elucidation in the Undergraduate Classroom.

C. Theodore, Organizer, Presiding

8:00 Introductory Remarks.

8:05 116. Exploration of chemistry students' reasoning of ultraviolet/visible light interaction with molecules spectroscopy. **H. Alfulaiti**, A. Cole, M. Balabanoff, A.C. Moon

8:25 117. Infrared Spectroscopy in the General Chemistry Laboratory. K. Stewart

8:45 118. Teaching Spectroscopy in Organic Chemistry with Spectra. B.A. Hathaway

9:05 Panel Discussion.

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 119. Teaching Organic Instrumentation Using an Online "Choose Your Own Adventure" Website Created Using the Open Source Tool Twine. **F.E. Jacobsen**

11:25 120. A card game for spectroscopy learning in organic chemistry. J. Ferguson

11:45 121. Template-Assisted Spectroscopy Interpretation in Undergraduate Organic Chemistry Labs. **M.P. Tracey**, M. Nigam, S. Martinus

12:05 Panel Discussion.

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 122. An Exploration of Post-Secondary Chemistry Instructors' Topic-Specific PCK for Teaching 1H NMR Spectroscopy. **R. Fantone**, E. Zotos, M. Connor, G.V. Szymczak Shultz

2:25 123. Putting the puzzle pieces together: A systematic approach to solving proton NMR problems. **L. Starkey**

2:45 124. Advances in benchtop NMR spectroscopy for the teaching laboratory; higher fields and lower costs. **J. Frost**, C. Karunaweera, J. Price

3:05 Panel Discussions.

3:25 Closing Remarks.

STEW 313

Inclusive practices for unrepresented groups in STEM

N. Lapeyrouse, T. Legron-Rodriguez, Organizers, Presiding

8:00 Introductory Remarks.

8:05 225. An overview of DEIR in STEM careers in Costa Rica: a demographic study. **I.F. Cespedes-Camacho**, S. Sandi-Urena

8:25 226. Increasing inclusivity of women in STEM: Organizing and improving Arkansas' virtual women in STEM conference. **S.K. Hamilton**, **S.E. Hubbard**

8:45 227. Increasing access to undergraduate research experiences: The OURA Lab. C. Ngai

9:05 228. Creating Support Structures to Promote Success for Underrepresented STEM Students. **M.B. Jensen**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 229. Inclusive practices for reducing gender-based stereotype threat in undergraduate classrooms: Results from a national survey. **M. Connor**

11:25 230. STEM Professional Identities: Investigating how students at a Hispanic-serving institute identify. **C. Bechard**, T. Legron-Rodriguez, N. Lapeyrouse

11:45 231. Growing connections from day one: Going beyond the syllabus to develop a foundation for student success. **Z. Mensinger**, K.R. Ries

12:05 232. Student Partnerships and Staff networks as powerful and democratic forces for change: Case Study exploring how the National Association of Disabled Staff Networks (NADSN) STEMM Action Group and Student Partners progress Disability inclusion in Higher Education Institutions and Beyond. **J. Sarju**

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 233. Implementation of culturally relevant pedagogy (CRP) in the science classroom through micro-credentialing. **A. Blecking**, R. Sandrin, C. Berg

2:25 234. Curated content: Anti-racist and inclusive physical science resources on a library research guide. **M. Finnegan**

2:45 235. Investigating the trend of BIPOC representation in chemistry textbooks. **M. Brackett**, C. Lopez-Castilla, B. Chiu, N. Lapeyrouse

3:05 236. Creating Intentional Groups that Support Student Belonging. **J. Casey**, **J. Nissen**, J. Liao, K. Kita, S. Krishna

3:25 Closing Remarks.

STEW 214ABCD

Systems Thinking in Chemistry Education: What it is and why we should do it

J. MacKellar, P. G. Mahaffy, *Organizers* A. Szozda, S. E. York, *Presiding*

8:00 Introductory Remarks.

8:05 266. Introduction to systems thinking: Benefits and challenges for chemistry education. **M. Orgill**, S.E. York

8:25 267. Investigating chemistry educators' perspectives towards systems thinking in chemistry education in an international setting. **A. Szozda**, K. Bruyere, H. Lee, P.G. Mahaffy, A.B. Flynn

8:45 268. Instructors' definitions and understandings of systems thinking in the context of tertiary chemistry classrooms. **S.E. York**, M. Orgill

9:05 269. Development of two modules for foundational chemistry courses: introduction to systems thinking and learning kinetics with systems thinking. **J.B. Randazzo**, **K. Aubrecht**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 270. Mapping sustainability into chemistry education: exploring the implications of linkages with frameworks, principles and tools. S. Matlin

11:25 271. Applying Instructional Design to Teach Systems Thinking. J.J. Stewart

11:45 272. Instructors' decision making about climate change instruction. M. Weinrich, P. Wilson

12:05 273. Cultivating Connection in the Analytical Chemistry Classroom. G. Clark

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 274. A Meta-Analysis of Climate Change Content in General Chemistry Textbooks. **P. Wilson**, N. Duarte, T. Harris, T. Sayers, M. Weinrich

2:25 275. Using systems thinking concepts to build a connecting thread of real world applications for general chemistry topics. **T. Holme**

2:45 276. Systems Thinking in Student Reasoning about Glycolysis. T. Barton

3:05 277. Autocatalytic networks in the classroom. **M. Huang**, B. Alappat, Y. Sawalha

3:25 Closing Remarks.

STEW 202

Training, mentoring, and managing laboratory teaching assistants

R. D. Link, D. Sokic-Lazic, *Organizers* C. S. Bagwill, J. Monahan, C. J. Sobers, C. Zumalt, *Presiding*

8:00 Introductory Remarks.

8:05 293. Developing an inclusive pedagogy & cultural awareness training for chemistry lab TAs. **C.J. Sobers**, G. Santos Mendoza

8:25 294. A first attempt: Incorporating bias, diversity, and inclusion discussions into a teaching assistant training program. **K.S. Anliker**

8:45 295. Exploring, encouraging, and learning from the inclusive teaching practices of STEM laboratory trainee graduate teaching assistants in Higher Education. **J. Sarju**, L.C. Jones

9:05 296. Teaching assistants- Keeping your allies together. S.M. Mata

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 297. What a GTA Wants: Training and Professional Development Requests by Graduate Teaching Assistants. **M. Herridge**

11:25 298. Mentoring Graduate Teaching Assistants Through Training Sessions and Course Offering at Brown University. L. Wang

11:45 299. Training Graduate Teaching Assistants through Role Playing. **D. Sokic-Lazic**, C.S. Bagwill, J. Monahan

12:05 300. Labflow & Data Insights: Using real time grading data to identify TAs in need of coaching early in the semester. **D. DeSutter**, E. Crowe

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 301. Expanding our TA workshop: How much time can I have? 30 hours over 8 days? Excellent!. **K.S. Anliker**

2:25 302. Implementing hierarchical structures and leadership skills for student workers. **A. Chant**

2:45 303. Managing graduate and non-graduate student TA in general chemistry lab. **m. khural**

3:05 304. Training and mentoring practices to foster professional growth for TA laboratory instructors. **L. Funari**, A.M. Bischof, A. Herring

3:25 Closing Remarks.

WALC 3121

Addressing the needs of the non-chemistry majors in general education courses

G. Crawford, K. D. Kloepper, Organizers, Presiding

8:00 Introductory Remarks.

8:05 37. Kitchens as laboratories: A distance education food chemistry course for non-science majors. **G. Crawford**

8:25 38. Say "Fromage": Tales from a General Education Study Travel Science Course Focused on the Science of Cheese. **J.L. Hawk**

8:45 39. Using historical context to teach science process in a non-major's physical science general education course. **L. Demoranville**

9:05 40. "Chemistry of Soap": A non-science majors lab-based course at Georgia Gwinnett College (GGC). **I.H. Krouse**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 41. Engagement of non-chemistry majors through a citizen science service-learning project. **K.D. Kloepper**, L. Simon

11:25 42. Creating real-life case studies for a non-majors chemistry and environment course.. A.N. Oldacre

11:45 43. Small Molecules Big Ideas at Riverview Correctional Facility. **J. Schmeisser**, S. Glazier

12:05 Panel Discussion.

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 44. Meeting students where they are: Intentional design for non-majors' chemistry courses in an interdisciplinary general education program. **R.E. Grote**, C.J. Hayes, B. Ramos

2:25 45. Engaging non-majors through a self-selected reading challenge. E. Vickers

2:45 46. Redesign of an Integrated Chemistry and Physics course to meet New Recommended Standards for Preservice Teachers. **L.A. Bolyard**, S. Hootman, S. Reynolds, B. Vermillion

3:05 47. Encouragement-Based Assessment: Grading by Points Rather Than Percentage. **J.A. Suchocki**

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 48. Chemical Literacy in Senior Students. L.Y. Nabulsi

4:10 49. Infusing chemistry concepts into interdisciplinary global challenges general education coursework: A Clemson University case study. **B.G. Trogden**, E.A. Boyd

4:30 50. Culinary Reactions - A home cooking lab course. **J. Schmeisser**

4:50 Panel Discussion.

5:10 Closing Remarks.

STEW 302

Blended instruction design and assessment: Leveraging technology to promote adaptive learning for college chemistry

M. Blaser, J. Chamberlain, J. J. Stewart, D. Yaron, Organizers, Presiding

8:00 Introductory Remarks.

8:05 64. Building student confidence and improving performance through scaffolded practice in a hybrid learning environment. **W. Lampart**, **B. Bekker**, M. Motika, R. Tang

8:25 65. Using technology to promote student metacognition in general chemistry. **T.M. Clark**

8:45 66. Improving learning in general chemistry via interactive courseware: Instructor perspectives. **M. Blaser**, M. McCarthy, J. Vincent

9:05 Panel Discussion: Instructor Use of Open Learning Initiative Courseware.

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 67. OLI General Chemistry Courseware Data Analysis. S. Raysor

11:25 68. Learning about the process of learning from logs of student interactions with online resources. **D. Yaron**, S. Raysor, M. Blaser, D. Doshi

11:45 69. Classroom observations for tracking the use of active learning activities in blended learning environments. **R.J. Tang**, M. Motika, M. Molinaro, M. Steinwachs, J. Diaz, J. Edwards

12:05 70. Putting classroom observations into practice: Measuring changes worth keeping in a redesigned hybrid course. **J. Chamberlain**, Z. Soliman, R.J. Tang, M. Motika, J. Diaz, J. Edwards

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 71. Artificial intelligence transcript analysis to support instructor reflection and measure change. **J. Chamberlain**, M. Blaser, M. Steinwachs, M. Molinaro

2:25 72. Is this working as intended? Analyzing student questions to assess the impact of a collaborative pedagogy over video chat. **B. McCollum**, L.A. Morsch, M.T. Wentzel

2:45 73. Improve learning in general chemistry via interactive courseware: Building a community of practice. **T. Shelton**, D. Doshi, M. Blaser

3:05 Panel Discussion: the AHA! Chemistry Project.

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 74. Curation and creation of open educational resources - An experiment in teaching undergraduate chemistry. **G. Shridhar**, L. Ravishankar

4:10 75. Using PhET Simulations to Promote Concept Development in General Chemistry: Are They Efficacious in an Independent Online Setting?. **J.F. Eichler**, K. Atit, L. Ye, M. Casselman, C. Murphy

4:30 76. Exploring a Simulation on Atomic Structure Before Lecture Improves Undergraduate Chemistry Students' Concept Learning. **A.M. Powe**, D.B. Franco, D. McClellan, R. Chastain, J. Hieb, L. Fuselier, M. DeCaro

4:50 77. No chemist left behind: leveraging virtual experiments for student engagement and retention. **T. Shelton**

5:10 Closing Remarks.

STEW 306

C.O.V.I.D.: Carrying Over Valuable Innovative Developments

E. G. Malina, Organizer, Presiding

8:00 Introductory Remarks.

8:05 78. Making the Most of Crises: Using Remote Learning to Refine Lab Analysis Goals. **S. Block**, L. Gustin, C. Wilkinson

8:25 79. Learning from the Pandemic: Engaging students through remote access to instrument software in an advanced CURE instrumentation laboratory course. **G. Rabah**

8:45 80. Developing a virtual chemistry lab framework with post-pandemic relevance in mind. **V.S. Vyas**

9:05 81. C.O.V.I.D Carrying Over Valuable Innovative Developments. S. Narayan

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 82. Using activities and explorations and capstone assignments as innovations in a general chemistry course for non-majors. **M.H. Towns**, C.J. Harwood, C.E. Wright

11:25 83. Second chance General Chemistry I developed as an online, short-term course. **A.B. Ormond**

11:45 84. Investigating student perception of course materials developed during the pandemic for introductory STEM courses. B. Chiu, **N. Lapeyrouse**

12:05 85. Improved Teaching: A Symptom of COVID-19. C. VanRooyen

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 86. Keep it or leave it: COVID-19-induced changes in my teaching. K.S. Craig

2:25 87. Research informed instructional design for remote teaching results in better student success for face-to-face classes. **D.G. Herrington**, R.D. Sweeder

2:45 88. Is intention to pursue STEM enough? Trends in student self-efficacy and science identify throughout the COVID-19 pandemic. **J. Forakis**, J. March

3:05 Panel Discussion.

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 89. Remote teaching of organic chemistry in two large-enrollment courses over four semesters. **V. Iosub**

4:10 90. Using Google Docs for Real-Time Collaborative Group Work during Virtual Lectures. **A.R. Babij**

4:30 91. How using an ELN to manage lab courses differs from using an LMS alone. **H. Arman**, F. Yoshimoto

4:50 Panel Discussion.

5:10 Closing Remarks.

WALC B058

Chemistry Education Research: Graduate Student Research Symposium

M. Connor, O. Crandell, *Organizers, Presiding*C. G. Carlson, E. L. Day, M. Herridge, S. Houchlei, Y. Liu, M. Popova, T. Qu, P. Vincent-Ruz, L. Wright Ward, *Presiding*

8:00 Introductory Remarks.

8:05 92. A novel approach to purposive sampling when mixed quantitative and qualitative criteria are used for participant selection. **K.Q. Magnone**, E.J. Yezierski

8:25 93. Facilitation practices of learning assistants in remote versus in-person settings. **N. Maggiore**, J. Karch, I. Caspari

8:45 94. The Authoritative-to-Dialogic Spectrum of Learning Assistant Facilitation Practices. **C.M. Carlos**, N. Maggiore, V. Dini, I. Caspari

9:05 95. Teachers as learners: professional development with storyboarding and molecular-level phenomena. **J. Ebert**, E.J. Yezierski

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 96. Withdrawn

11:25 97. General chemistry instructors' intentions for and evidence of student learning from external representations of acid-base titrations. N. Baldwin, M. Orgill

11:45 98. Assessing the impact of a Master's in Chemistry program on pedagogical content knowledge change in high school science teachers. M. Bautista, M.L. Miller

12:05 99. Into the unknown: Investigating STEM future instructors' decisions to implement new instructional strategies. A. Kraft, E.L. Atieh, L. Shi, M.N. Stains

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 100. Investigating faculty perceptions of the role of energy and electrostatic/bonding interactions in the context of reactions within their course. **A. Roach**, Z. Roche Allred, B. Adams, S.M. Underwood

2:25 101. Chemical Literacy Changes in General Chemistry and Organic Chemistry Students. **L.Y. Nabulsi**

2:45 102. Investigating the structure of students' organic chemistry knowledge. **S. Abeywardana**, M. Cooper

3:05 103. "That's Phenomenal!: The Translation of Phenomena-Based Learning to Postsecondary Introductory Chemistry as an Entry Point to Causal Mechanistic Reasoning. **L. Scharlott**, D. Rippey, N.M. Becker

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 104. Employer-desired competency development in project-based general chemistry laboratory courses. **B. Eggly**, P. Patterson-Lee, L.A. Posey

4:10 105. The Laboratory as a Vehicle for Argumentation Enhancement among Pre-Service Teachers of Science Education. **M. Hugerat**

4:30 106. Exploring Post-Secondary Chemistry Instructor's Resources for Planning Instruction. **R. Fantone**, G.V. Szymczak Shultz

4:50 107. Using the dynamic transfer framework to explore chemistry students' interpretations of the first law across disciplinary contexts. **A.P. Parobek**, P.M. Chaffin, M.H. Towns

5:10 Closing Remarks.

WALC B093

Disrupting Grading

D. A. Barr, K. D. Closser, R. D. Link, J. L. Muzyka, J. R. Ring, C. Sorensen-Unruh, *Organizers*

8:00 Introductory Remarks.

8:05 125. Chemistry Coins: A Grading System Based on Bloom's Taxonomy in an Inorganic Chemistry Course. **K. Young**

- **8:25 126.** Quantized grading: An ab initio approach to using specifications-based grading in physical chemistry. **K.D. Closser**, M.J. Hawker, H. Muchalski
- **8:45 127.** Implementation of specifications grading in an online forensic science quality assurance course. **T. Legron-Rodriguez**, C. Randles
- **9:05 128.** Help, I've been Chegged! Understanding academic integrity in the chemistry classroom. **B.K. DeKorver**, D.G. Herrington
- 9:25 Closing Remarks.
- 9:30 Break.
- 11:00 Introductory Remarks.
- **11:05 129.** An implementation of mastery-based grading based on Marzano's Taxonomy in large-enrollment general chemistry. **S. Garrett-Roe**, T.D. Shepherd
- **11:25 130.** An alternative grading strategy in a General Chemistry I classroom. **J. Haile**
- **11:45 131.** Standards-based grading, flipped design, and connection-building activities: a three-pronged approach to promote student engagement in a first-semester general chemistry course. **M.J. Hawker**, K.D. Closser, T. Brooks, R. Olarte
- **12:05 132.** On the quest to improve student learning in general chemistry lecture using a competency-based approach before and during COVID. **B.E. Taylor**
- **12:25** Closing Remarks.
- 12:30 Lunch.
- **2:00** Introductory Remarks.
- **2:05 133.** Shifting the focus away from points: A year of alternative grading in large-enrollment General Chemistry lab. **K.A. Gesmundo**, V.M. Berns
- **2:25 134.** Using specifications grading to enhance scientific writing in a general chemistry II lab. **E. Wachter**
- **2:45 135.** Specifications grading by a scared first-timer in general chemistry. **W. Kennerly**

3:05 136. Reducing performance gaps in chemistry through equity-focused course design. **K.Y. Neiles**, R. Bowers, R.K. Larsen

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 137. Ungrading for Meaningful Chemistry Learning. J. Brown

4:10 138. Innovative grading practices in introductory chemistry courses at a 2-year institution. **M.T. van Opstal**, J.B. Wachter, J. Ellefson-Kuehn

4:30 139. Ungrading in Environmental Toxicology and General Chemistry. **C.M. Woodbridge**

4:50 140. Lessons learned from ungrading the general chemistry classroom at a primarily undergraduate institution. **T.E. Alivio**

5:10 Closing Remarks.

WALC 3122

Effective Graduate Education for Masters and Doctoral Chemistry Students

J. Harshman, G. V. Szymczak Shultz, Organizers, Presiding

8:00 Introductory Remarks.

8:05 141. Critical challenges to chemistry doctoral education in the United States. **J. Harshman**

8:25 142. Investigating how chemistry graduate students develop and engage in the use of scientific practices within their research. **B. Martinez**, Z. Roche Allred, P. Alvarez, S.M. Underwood

- **8:45 143.** Factors which predict the perceived value of a seminar talk. **E.W. Kelley**
- **9:05 144.** Professional identity: Catalysis in the synthesis of chemists. **G. Bhattacharyya**
- **9:25** Closing Remarks.
- 9:30 Break.
- 11:00 Introductory Remarks.
- 11:05 145. Graduate School Experiences in the Chemical Sciences: Student Views and Implications for Change. J. Stockard
- 11:25 146. Mentorship needs for chemistry students and early career researchers. E.W. Kelley
- **11:45 147.** Investigation of Advisor-Advisee Conflict Communication in U.S. Chemistry Graduate Education. **T. Qu**, J. Harshman
- **12:05 148.** Focus groups with chemistry graduate students from English-additional language (Eng+) backgrounds. **J.M. Deng**, A.B. Flynn
- **12:25** Closing Remarks.
- 12:30 Lunch.
- **2:00** Introductory Remarks.
- **2:05 149.** The ACS Bridge Program: Enhancing diversity, equity, inclusion, and respect in graduate education in the chemical sciences. **J. Schlatterer**
- **2:25 150.** Measuring the Impact of the Individual Development Plan Process in Chemistry Graduate Education. **C. Kuniyoshi**, C. Fuhrmann, L. O'Dwyer, **J. Schlatterer**
- **2:45 151.** Preparing chemistry graduate students for careers in industry and national labs: An innovative and holistic training model. **S.E. York**
- **3:05 152.** Effective graduate training in soft skills with a full-day professional development workshop. **S. Lim**, V. McLaughlin, C. Patterson, R. Richardson, J. Goodey Pellois, C. Hilty, M. Harthcock

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 153. Connecting the Dots between Organic Chemistry and Social Justice through Mechanistic Reasoning. **I. Caspari-Gnann**, G. Pichard, R. Scheck

4:10 154. Instructional Coaching: A Community-based Approach to Supporting Graduate Student Instructors. **G.V. Szymczak Shultz**, E. Zotos, R. Fantone, J. Spencer

4:30 155. Workshop Series for Graduate Student Mentors of Undergraduate Researchers: Development and Impact on Mentor Perspectives and Teaching Practices. L. Coté, M. Helix, C. Stachl, E. Stone, **A.M. Baranger**

4:50 156. Chemistry education research group culture and individual student growth: Toward best practices in management and development. **E.J. Yezierski**

5:10 Closing Remarks.

WALC B066

Engaging Students in Organic Chemistry: A Symposium to Honor Barbara Murray

P. J. Kreke, B. Murray, Organizers, Presiding

8:00 Introductory Remarks.

8:05 157. Colorful polymers. C.F. Hermann, C. Burke

8:25 158. Engaging organic chemistry students through projects that address green chemistry principles. **D.C. Bromfield-Lee**

8:45 159. Engaging students in interpreting NMR spectra with metacognition. **L.J. Martin**

9:05 160. Scaffolding organic chemistry laboratory: Start with experiments. **M. Turon**, L. Ahlberg

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 161. Employing forensic case scenarios in Organic Chemistry laboratory. A.B. Waghe, A.A. Waghe

11:25 162. Teaching scientific thinking through writing to learn: Give your students CPR. **B. Burlingham**

11:45 163. 'My Favorite Drug': Exploring connections between organic chemistry and medicine. **A.V. Aditya**

12:05 164. Developing video games to communicate organic chemistry concepts. **S.G. Sogo**

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 165. Reading assignments and term projects in Honors organic chemistry. **C. Stephens, S. Davis,** S.A. Dandekar

2:25 166. Adapting problem solving activities for enhancing students' conceptual understanding in organic chemistry. **G. Shridhar**, L. Ravishankar

2:45 167. Integrating the preparation of biomolecules and pharmaceutical drugs in teaching undergraduate Organic Chemistry: Examining electrophilic and nucleophilic aromatic substitution in the synthesis of thyroxine. **N.C. Kallan**, S.N. Mahapatro

3:05 168. Teaching a literature-based advanced organic chemistry course at a primarily undergraduate institution. **D.L. Silverio**, M.J. Mistretta, S.P. Buzzolani

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 169. Abductive reasoning for problem solving in organic chemistry. **J.W. Wackerly**

4:10 170. Supporting remote learners with an electronic whiteboard. **P.M. Morgan**

4:30 171. Helping organic chemistry students generate the right questions: A blend of online homework and written problem sets. J.M. Karty, **R. Jew**

4:50 Panel Discussion.

5:10 Closing Remarks.

BRWN 1154

Engaging Students in Physical Chemistry

D. E. Gardner, C. M. Teague, Organizers, Presiding

8:00 Introductory Remarks.

8:05 172. Lessons learned in the conversion of a flipped physical chemistry course sequence to a Hyflex format. **L.M. Goss**

8:25 173. Student posters as a way to modernize the PChem Lab when new equipment is not an option. **J. Monahan**

8:45 174. Oral exams: A useful tool to help your students learn physical chemistry better. **D.E. Gardner**

9:05 175. Non-traditional approaches to curricula, assessments, and personal growth in the physical chemistry classroom. **A.N. Giordano**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 176. Integrating computational modeling in physical chemistry laboratory. **H.L. Berghout**, M.J. Perri

11:25 177. Game: Quantum Particle-in-a-Sandbox. D.V. Chulhai

11:45 178. Water, water everywhere: A guided-inquiry molecular dynamics experiment. C.D. Bruce, M.J. Perri, A.K. Sharma, R.M. Whitnell

12:05 Panel Discussion.

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 179. Exploring Internal Energy with Python: A Computational Guided Inquiry Assignment for Physical Chemistry Students. **T. Guasco**, S. Neshyba, G. Stokes, W.C. Pfalzgraff

2:25 180. Engaging students in physical chemistry using Python and Jupyter notebooks to target conceptual, mathematical, and graphical reasoning. **K. Tibbetts**, S.S. Hunnicutt

2:45 181. Using R in the Physical Chemistry Laboratory. B.D. May, K. Range

3:05 Panel Discussion.

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 182. Encouraging student engagement in scientific practices through a gas-phase IR POGIL physical chemistry laboratory experiment. **J. Beck**, D.M. Miller

4:10 183. Withdrawn

4:30 184. Estimating λ MAX for conjugated dye systems with a finite well quantum mechanical approximation. **D. Catlett**

4:50 185. Dynamical and statistical monitoring of temperature and pressure in the measurement of the heat capacity ratio by adiabatic expansion. **D. Catlett**

5:10 Closing Remarks.

WALC 3090

Faculty Experience with Course-based Undergraduate Research Experience (CURE)

K. J. Ho, *Organizer*J. L. Stafford, T. Terry, *Presiding*

8:00 Introductory Remarks.

8:05 194. Course-based Research Experiences for High School Students: Start Early, Repeat Often. **T. Terry**

8:25 195. A pre-CURE implementation in a large General Chemistry lecture course. **D. Habel-Rodriguez**, K.J. Ho

8:45 196. Development of a team taught, first year course based undergraduate research experience at the interface of biology and chemistry. **L. Knecht**, J. Van Dyken

9:05 Panel Discussion.

9:25 Closing Remarks.

- 9:30 Break.
- 11:00 Introductory Remarks.
- **11:05 197.** Exploring the frontiers of chemistry: A research methods course at a diverse, urban, R1 university. **K. Tibbetts**, L. Waller, M. Smith
- **11:25 198.** Development of a two-semester undergraduate research methods course sequence. **A.J. Carroll**
- 11:45 199. Iteration of a CURE for biochemistry II lecture. E. Ragan
- 12:05 Panel discussion.
- **12:25** Closing Remarks.
- 12:30 Lunch.
- 2:00 Introductory Remarks.
- **2:05 200.** Teaching Next Generation Chemists: How to Prepare Lab Instructors/TAs to Teach CURE. **J.L. Stafford**
- **2:25 201.** Development and Implementation of a Multi-Year, CURE-based Chemistry Lab Curriculum. **E.D. Helms**, J.J. Peterson
- **2:45 202.** Design and implementation of a graduated approach to an independent instrumental analysis project. **T. Thomas-Smith**
- **3:05 203.** Integrating Student-Focused Interdisciplinary Research to Enhance Laboratory Capabilities and Student Preparedness. **D.M. West**, M. Becker, J. Selaya, J. Wilson, N. Dascher, L. Losey, J. Long, J. Murphy, P. Tompkins, J.D. Patton
- 3:25 Closing Remarks.
- 3:30 Break.
- **3:45** Introductory Remarks.
- **3:50 204.** Implementing course based undergraduate research experiences that bridge coursework between the spectroscopic identification of organic molecules and inorganic chemistry labs: A survey of three offerings. **W. Carroll**, E.C. Lisic

4:10 205. From the bench to the desk to the bench: Experiences developing and implementing an inorganic chemistry CURE during COVID-19. **E. Victor**

4:30 206. Comparing different modality of CURE and their effects on student's learning. **K.J. Ho**

4:50 Panel Discussion.

5:10 Closing Remarks.

WALC 2007

George R. Hague Memorial AP/IB Chemistry Symposium

L. Cummings, P. D. Price, Organizers, Presiding

8:00 Introductory Remarks.

8:05 214. Inner Strength: Why do acids break up?. K.L. Hendren

8:25 215. Kinetics Activities that Promote a Particle Collisions Point of View. **A. Snyder**

8:45 216. Just a droplet in the bucket of AP Chemistry; equilibrium, acid/base reactions, and thermodynamics all in one microscale chemistry experiment. **R. Johnson**

9:05 217. Claim Evidence Reasoning (CER) in the AP Chemistry Classroom using a Smartphone Spectroscopy Beer's Law and Rate Law Experiments. **A. Schmidt**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 218. Pattern Investigations in AP Chemistry. J. Brown

11:25 219. Using Student Misconceptions as a Guide to Create Assessment Items for AP Chemistry. **M. Farabaugh**

11:45 220. AP Readiness: an access and equity program. M.A. Morgan

12:05 221. Implementing best practices to improve scores on the AP Chemistry exam. **J. Benigna**

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 222. College Board resources and updates for AP Chemistry. J. Benigna

2:25 223. Review of the 2022 AP Chemistry Exam. K.A. Beran, J. Benigna

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 224. Q&A with Chief Reader, Development Committee, and College Board. **K.A. Beran**, J. Benigna

5:10 Closing Remarks.

WALC 3138

Innovations and Experiences In the Chemistry Classroom During the First Two Years

T. B. Higgins, Organizer, Presiding

8:00 Introductory Remarks.

8:05 237. Particular Meaning. B. Ratcliff

8:25 238. STEM Based Cross-Curriculum Modules to Enhance Student Engagement and Learning. **R. Bright**, T. Holmes, C. Dodd

8:45 239. 'Mole of reaction': Using units consistently in general chemistry. **D.Z. Keifer**, D. Rieck

9:05 240. The Use of Analogies in General and Organic Chemistry Courses. **B.E.** Love

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 241. Adopt a Chemical Substance: Explore How General Chemistry Topics Are Cross-linked. **R. Zhang**

11:25 242. Using the flipped classroom in first year general chemistry courses at a community college. S. Stegall

11:45 243. Student generated connections to chemistry content to enhance interest in introductory chemistry. **M. Hands**

12:05 244. Mobile Technology in the Chemistry Classroom: Do students think it's worth surpassing the activation barrier?. B. Baldock, **A.L. Fernandez**

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 245. Uniting Chemical Concepts Using Ocean Acidification in a General Chemistry 2 Course. **C.S. Haslag**

2:25 246. Using scientific literature to increase students' understanding of what it means to be a scientist. **J.M. Liu**, A. Perla, S. Hollar

2:45 247. Implementation of Pop Quizzes as an Inclusive Teaching Tool in General Chemistry. **E. Johnson**

3:05 248. VSEPR flat packs. K. Rust

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 249. Curriculum Transformation and Student Engagement in General Chemistry. **L.B. Lamont**, J.J. Weaver, J.M. Trate, r. bain, t. pesavento, C.R. Landis, E.L. Sibert

4:10 250. How an EDI in STEM Community of Practice prompted a successful change in General Chemistry discussion activities. **A.J. Kabrhel**

4:30 251. How do undergraduate students solve a neutralization reaction problem before and after instruction?. **N.M. Dickson- Karn**, T.M. Clark

4:50 252. What to do about the Henderson-Hasselbalch equation?. **N.M. Dickson-Karn**, T.M. Clark

5:10 Closing Remarks.

STEW 310

Integrating Green Chemistry and Sustainability into Chemistry Education

L. Bastin, A. P. Dicks, Organizers, Presiding

8:00 Introductory Remarks.

8:05 253. Phenomena and Storyline Tools for Using Green Chemistry in High School Classroom. **J. Butler**, S. Loomis, J. Burdick

8:25 254. Greening the high school classroom through a hands-on collaborative workshop. **J.E. Wissinger**, C.K. Lydon, C. Javner

8:45 255. Re-orienting preservice chemistry teachers towards sustainability and its integration. **R. Hanson**, C. Hanson

9:05 256. Effects of the use of standard and alternative materials in acid/base titration on secondary school chemistry students' achievement and attitude towards environmental sustainability. **F.I. Umanah**, T.E. Owoyemi

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 257. A Multi-institutional and Industry Collaboration Towards Greening the General and Inorganic Chemistry Laboratory Curriculum. **N.J. O'Neil**, D.J. Campbell, J. Moir, J. De Backere

11:25 258. What are Efficient Reactions? A Module for General Chemistry Connecting Green Chemistry and Systems Thinking. J. D'eon, J.R. Silverman

11:45 259. Integrating the tenets of green chemistry in gateway chemistry courses through an incremental approach in order to facilitate deeper understanding and retention. **D.A. Laviska**

12:05 Panel Discussion.

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 260. Integration of green chemistry into the organic chemistry curriculum: Findings from a nationwide survey. **K.D. Grieger**, A. Leontyev

2:25 261. Integrating Green Chemistry into the Organic Laboratory using Project-Based Experiments and Case Studies. **M. Zhang**, E.L. Day, M. Cooper, H. Mcfall-Boegeman, S. Petritis, R.E. Maleczka

2:45 262. Proline Catalyzed Solventless Green Aldol Reaction: An Undergraduate Organic Laboratory Experiment. **M. Nigam**, M.P. Tracey

3:05 263. Sustainable Catalysis Research through an Integrated Chemistry Laboratory Course. **o. villanueva**

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 264. The importance of a common philosophy, resource sharing, and peer-to-peer learning and mentorship in broadening and deepening the integration of green chemistry in chemistry education. **J. Moir**, A.S. Cannon, J. MacKellar

4:10 265. Addressing Environmental Racism in through Community and Political Engagement in Chemistry Courses. **L. Bastin**, A. Martin

4:30 Panel Discussion.

5:10 Closing Remarks.

WALC 3127

Teaching in the chemistry laboratory: Beyond confirmatory experiences

B. M. Neal, D. J. Styers-Barnett, K. Weber Stickney, Organizers, Presiding

8:00 Introductory Remarks.

- **8:05 278.** A Two Week Model for Introducing Guided Inquiry into General Chemistry Lab. V. Fringer, K. Mandery, T. Bibelnieks, **J. Wainman**
- **8:25 279.** Physical Sciences Research Experience a model for co-designing lab experiences with students, for students. K. Kim, E. Sauer, **S. Mikhaylichenko**
- **8:45 280.** Argument driven inquiry for introductory chemistry students. **M. Hands**
- **9:05 281.** Development of a Chemistry Laboratory Course for Online Instruction. **C. Schrank**, S. Post, K.J. McKnelly
- 9:25 Closing Remarks.
- **9:30** Break.
- 11:00 Introductory Remarks.
- **11:05 282.** Materials Characterization Project: Developing critical hard and soft skills for success in chemistry careers. **D.A. Belle-Oudry**, J.E. Pemberton
- 11:25 283. Design of a half-semester, undergraduate research project: Optimization of the separation of a three-component mixture by reverse-phase HPLC using C_{18} . A.S. Breitbach
- **11:45 284.** Training Tomorrow's Scientists: Lessons Learned from Embedding Professional Skills into a Guided Grant and Laboratory Project. **D.J. Styers-Barnett**, A.N. Giordano
- **12:05 285.** Making the Switch: Employing the "Cooperative Chemistry" model of General Chemistry lab at a large R2 university. **D.E. Blumling**, B. Boardman, C.A. Hughey, O.H. Judd
- 12:25 Closing Remarks.
- 12:30 Lunch.
- 2:00 Introductory Remarks.
- **2:05 286.** Community garden field experiences as a means to reduce anxiety and increase self-efficacy. **E.L. Lebeau**
- **2:25 287.** Metal-organic frameworks in lower-division chemistry courses. K. Wiese, M.D. Haak, M. Burand, **K.C. Stylianou**

2:45 288. Aquatic photodegradation of pharmaceutical pollutants: Cultivating research skills in the undergraduate lab. **J.M. Buth**, R. Ossola, S.B. Partanen, K.P. McNeill, W. Arnold, D.E. Latch

3:05 289. What's in the water?: Using real world water samples in the teaching laboratory. **N.A. Law, B.L. Brabetz**, J.T. Sprague

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 290. From synthesis and analysis to elucidating steric and electronic effects: An acyl substitution organic chemistry lab. **J.P. Moerdyk**

4:10 291. A research-based capstone project for sophomore level organic chemistry lab. **C.S. Bagwill**, B. Woods, I. Brown

4:30 292. Shedding light on organic synthesis: A supplemental spectroscopy course to accompany Organic Chemistry 2 Laboratory. **K. Weber Stickney**, L.H. Mielke

4:50 Panel Discussion.

5:10 Closing Remarks.

WALC 1055

Assessment and Measurement in Research and Practice

K. L. Murphy, J. R. Raker, Organizers, Presiding

8:00 Introductory Remarks.

8:05 51. Insight into student reasoning using online reasoning chain construction assessments (ORCCA). **M.L. Nagel**, B. Lindsey

8:25 52. Investigating Item Validity on Answer-Until-Correct Assessments. **D.G. Schreurs**, J.M. Trate, M.A. Teichert, C.J. Luxford, J.L. Schneider, K.L. Murphy

8:45 53. Re-Envisioning Learning Outcomes and Assessment Practices for a High Enrollment General Chemistry II Course. **J.M. Trate**, L.B. Lamont, J.J. Weaver, T. Pesavento

9:05 54. Variations in Assignment Expectations as Represented by Rubric Structure and Content in General Chemistry. **M. Herridge**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 55. Labflow: Using big data to trace and assess laboratory skills. D. DeSutter

11:25 56. Do We Ask Students to Do What We Want Them to Learn? An Investigation of the General Chemistry Laboratory Course. **E.M. Duffy**, A. Kreps, A. MacNeil

11:45 57. Comparing proctored in-person exams with unproctored online exams in general chemistry: Performance, security, and perspectives of students and faculty. **D.A. Turner**, T.M. Clark

12:05 Panel Discussion.

12:25 Closing Remarks.

STEW 218ABCD

Biochemistry Education: Discussions of the Laboratory Learning Environment

S. Johnson, Organizer, Presiding

8:00 Introductory Remarks.

8:05 58. Imaging single molecules of Annexin V binding to membranes in an undergraduate physical biochemistry lab course. **J.D. Knight**, N. Alansari, D.T. Giardina, T.N. Huynh

8:25 59. Designing a Western Blot Method Optimized for the Time Constraints of a Biochemistry Teaching Laboratory. **S. Katner**, C. Krois

8:45 60. 39andWoof: Canine breed determination using DNA microsatellite analysis. D. Punthrankul, **K.R. Willian**

9:05 Panel Discussion.

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 61. Modernizing the Biochemistry Lab Experience: A Blended Computational and Experimental Biochemistry CURE. **E. Reynolds**

11:25 62. Reimagining an established CURE to provide high-quality digital learning experiences that are intentionally equitable, inclusive and accessible for all students. **A. Sikora**, B. Hall, S. De, P.A. Craig

11:45 63. Does the use of an Integrated Lab Notebook in an Undergraduate Biochemistry Laboratory Increase Student Understanding?. **S. Katner**, C. Krois, J.R. Pribyl

12:05 Panel Discussion.

12:25 Closing Remarks.

WALC 1132

Chemistry education research at a crossroads: Where do we need to go now?

- D. G. Herrington, Organizer, Presiding
- O. Crandell, R. D. Sweeder, Presiding

8:00 Introductory Remarks.

8:05 108. Moving along the pandemic response continuum from survival towards intentionality. **M. Cooper, T. Holme**

8:25 109. Blurring the lines: Embracing intersectionality within (and beyond) the biochemistry education community.. **T.J. Bussey**, **E. Offerdahl**

8:45 110. Broadening relevance, dissemination, and impact of Chemistry Education Research. **V. Talanquer**, **P.G. Mahaffy**

9:05 111. Promoting high quality chemistry education research. **O. Crandell**, D.G. Herrington, R.D. Sweeder

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 112. How do we define effective practice in chemistry education and how do we get people to use it?. B. McCollum, G. Rushton

11:25 113. Envisioning an education research community invested in racial equity. S.F. Bancroft, V.R. Ralph

11:45 114. Changing the conversation around secondary chemistry CER: Creating win-win collaborations among teachers and researchers. R. Stowe, E.J. Yezierski

12:05 115. Implementing effective chemistry education practices. **R.D. Sweeder**, D.G. Herrington, O. Crandell

12:25 Closing Remarks.

BRWN 3102

Extended Reality in Chemistry Education

L. Wright Ward, Organizer

E. Echeverri, Presiding

8:00 Introductory Remarks.

8:05 186. Interdisciplinary collaboration: The key for a successful immersive educational experience. **D. Venegas**, **H. Gutiérrez**

8:25 187. Mobile Augmented Reality: a new way to train in the chemical lab!. **j. dominguez alfaro**, P. Van Puyvelde

8:45 188. Using Augmented and Virtual Reality to Enhance Students' Visualization and Understanding of Molecular Structures. **S. Dalili**, M. Abdinejad, H. Qorbani

9:05 189. Eye tracking and AR in an experimental setting. S. Syskowski, J. Huwer

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 190. Development and Exploration of a Virtual Reality Learning Environment (VRLE) build around a novel model to extract, represent, and predict Cycloaddition Reactions. **E. Echeverri**, M. Oliver-Hoyo

11:25 191. A Mobile Augmented Reality (AR) Application for Visualizing Molecular Symmetry and Orbitals. M. Zambri, **J. De Backere**

11:45 192. Making Virtual Reality a Reality in the Biochemistry Classroom. **D.A. Jackson**, C. Yu, K. Belozerov

12:05 193. Withdrawn

12:25 Closing Remarks.

Favorite half-hour lab experiments

G. Lisensky, Organizer, Presiding

8:00 Introductory Remarks.

8:05 207. A Quick and Easy Electroless Deposition and Alkanethiol Treatment to Form a Superhydrophobic Surface. **G. Lisensky**

8:25 208. Measuring the molar mass of air. D.J. Campbell

8:45 209. Beaker batteries: Making electrochemical cells to better understand battery chemistry and components. **L.J. Lyons**

9:05 210. Identifying Solutions by Chemical Properties. L. Hansen

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 211. Demystifying source modulation-lock-in amplification in chemical instrumentation: a short experiment. L.R. Sharpe

11:25 212. The Firestarter. A Classroom Demo of Adiabatic Compression. N.E. Schlotter

11:45 213. A Series of NGSS Aligned Acid-Base Chemistry Activities for Second Grade Students. **A. Alveshere**, R. Waterman

12:05 Panel Discussion.

12:25 Closing Remarks.

Well thats interesting! Emergent results, unexpected findings, and new areas for research

M. Herridge, N. M. James, Organizers, Presiding

8:00 Introductory Remarks.

8:05 305. Leveraging Social Comparisons: an Exploratory Study of How Students Self-Evaluate in Peer Review Settings. **S. Berg**, A.C. Moon

8:25 306. The Lemonade Tastes Good: Co-teaching the Methods Course for the Benefit of the Students. **J.R. Pribyl**, L.A. Senden

8:45 307. A Side Trip into Work orientation and Chemistry Teacher Longevity: What the Covid-19 pandemic might have to teach us. **S.B. Boesdorfer**

9:05 308. How Prompt Iteration Can Affect Student's Explanations of an Intramolecular Reaction Mechanism. **S. Houchlei**, M. Cooper

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 309. Student Resource Use in Introductory Chemistry and the Impacts of COVID-19. **L.C. Williams**, J.N. Orvis, S. Melvin

11:25 310. Online Learning and study habits: Perspectives from three universities in Spain and the UK. S. Fergus, A. Notario, Y. Diaz, R. Blackburn, D. Williams

11:45 311. The forgotten materiality of chemical education: A research and teaching opportunity. **D.J. Wink**

12:05 Panel Discussion.

12:25 Closing Remarks.

PMU

North Ballroom

General Posters 1

M. T. van Opstal, Organizer, Presiding

9:30 - 10:30

- **312.** Teaching Chemistry Outside of the Text. **D. Ventura**
- **313.** Chemical composition of copper-tin-aluminum alloys from a system of three equations in three variables via non-destructive sample analysis. **A. Van Sertima**, S. Simmons, R. Zablah-Vasquez, A. Villalta-Cerdas
- **314.** Emphasizing Student success with /collaborative Learning Strategies Utilizing the Study cycle in a Hybrid General Chemistry I Course. **M.H. Benko**
- 315. Withdrawn
- **316.** Case Studies of Using McGuire's "Teach Students How to Learn" Intervention to Successfully Decrease DFW Rates in General Chemistry I. **S.R. Trevino**
- **317.** Encouraging Argumentation on Chemistry Education with an Interrupted Case Study. **M. Silva de Lima**, D. Gomes Lima dos Santos, S. Queiroz
- 318. Computational chemistry assisting the identification of polymers. C. Salter
- 319. Flipped Classroom Approached in Chemistry Classes. R.S. Perera
- **320.** The Improvements for Interpretation of the Law of Definite Proportions in Science Textbooks in Korea. **H. Kim**, H. Lee
- 321. Photoacoustic Demonstration: Making Music with Light. H. Park

- 322. The Cognitive Load of Significant Figures. R. Britt, T. Jones, M. Weinrich
- **323.** How does problem-solving with organic chemistry molecules literally look like?. **A. Langner**, N. Graulich
- **324.** Merging Organic and General Chemistry in a Four Semester Chemistry Curriculum. **T.F. Doherty**, X. Prat-Resina
- **325.** Alginate encapsulation preserves enzyme activity in an oxidative environment. A.A. Lee, E.D. Gervasio, S.A. Musso, A.A. Maalouf, R. Hughes, **E.M. Woolridge**
- **326.** Student Conceptions of pH Buffers using Resource and Reasoning Frameworks. **M.A. Sheppard**, C.F. Bauer
- **327.** Introducing Postdoctoral Scholars to Careers at Primarily Undergraduate Institutions through a Visiting Seminar Program. **J.E. Mihalick**, E. Winterrowd
- **328.** Active Learning Approaches in Large Enrollment Organic Chemistry Course. **A. Frantz**
- **329.** Specifications Grading as a Catalyst for Mastery Learning in Organic Chemistry Courses. **D.T. Fujito**
- **330.** Student Perceptions of Hybrid Labs: Changes in Attitudes Toward Chemistry. **E.B. Mobley**, H.G. Sturtevant, A. Anderson-Wile
- **331.** Demonstrating bacterial resistance to antibiotics. **D. Marous**, C. DeWeese, R. Boyette
- **332.** Using the M-ASSIST (modified approaches and study skills inventory) to probe student study-related behaviors. **J.N. Orvis**, E. Johnson
- **333.** The ACS Committee on Community Activities (CCA): Resources for outreach and public engagement. **L.R. Stepan**, **W.J. Doria**
- **334.** Development of Interactive Tutorials to Improve Course Outcomes in a High-Enrollment General Chemistry Course. E. Olson, **T.L. Vickrey**, M.A. Griep, M. Balabanoff, J.A. Kautz, E.G. Malina
- 335. Do case studies help students understand the relevance of chemistry?. A. Glass
- 336. A card game for reviewing chemical instrumentation. K.K. Cline

- 337. Contemporary Chemists Project. R.C. Dudek
- **338.** The corundum rainbow: Designing a computational experiment as an introduction to solid state chemistry. **S. Parrott**
- **339.** Chemists as voters: Pedagogical strategies to improve student democratic participation. **B.G. Trogden**
- **340.** An Inquiry-Based Comparative Analysis of Salt Content in Food for Quantitative Analysis Laboratory. **E.M. McCorquodale**, K. Fogarty
- **341.** Laboratory Report Scaffolding. **K. McElhoney**
- **342.** Context Matters: Evaluating the effects that integrating context into POGIL curricula had on students achieving content proficiency in a general chemistry course. **G.D. Ibarrola Recalde**, D. King
- **343.** Outcomes and experiences from a faculty fellows program on Three-Dimensional Learning. **D.C. Chatfield**, **M. Delgado**, **M.M. Gillespie**, **P. Graves**, **R. López de la Vega**, U. Swamy, S.M. Underwood, J.H. Carmel
- **344.** A Workshop CURE: The UIC STEM Initiative CoLab Program. **A. Wierzchowski**

STEW 206

Engaging Students in Analytical Chemistry - Classroom Practices and Learning Environments

L. Mier, M. Queen, Organizers, Presiding

11:00 Introductory Remarks.

11:05 345. Effects of modalities on student performance in an introductory analytical chemistry course. E. Kwong

11:25 346. Just-in-Time Videos and Mini-Case Studies to Engage and Prepare Students for a Classic Quant Lab. **C.A. Lucy**, J.J. Harynuk

11:45 347. Take-Home Examinations for Analytical Chemistry Courses to Evaluate and Enhance Learning. **A. Jacobs**

12:05 348. Equity is paramount: making analytical chemistry accessible to blind and vision impaired students. **A.M. Palmer**, A.A. Hill

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 349. Build a Spectrometer Lab: Construct and characterize a spectrometer with interchangeable parts. **A.D. Gift**, J.A. Godek

2:25 350. 'Tis the Season for Measuring pH in a Project-Based Quantitative Analysis Course. **M. Queen**

2:45 351. Incorporating scientific instrumentation design into the Analytical Chemistry curriculum. **B.J. LeSuer**

3:05 352. Using Paper Microfluidics as a Platform for Increasing Inquiry in the Analytical Laboratory. **K. Frederick**, A.L. Van Wyk, R.S. Cole, M. Lieberman, R. Roller

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 353. Choose Your Own Adventure in the Instrumental Analysis Laboratory. **K.H. Fogarty**, E.M. McCorquodale

4:10 354. Environmental Chemistry Virtual Research Project for Quantitative Analysis. **K.C. Lanigan**

4:30 355. Leveraging Pack Mentality to Unleash Student Engagement in Instrumental Analysis. **K. Proctor**

4:50 356. Harmonizing the Grammar for Scaled Measures of Concentration. **D.E. Thompson**

5:10 Closing Remarks.

STEW 311

Research Investigations in STEM Identity in Chemistry Learning Environments

J. H. Carmel, M. L. Head, Organizers, Presiding

11:00 Introductory Remarks.

11:05 357. Validation and pilot use of social capital and chemistry identity survey instruments at a Hispanic-serving institution. G. Castano

11:25 358. Characterizing power structures: using positionality theory to develop a chemistry classroom observation protocol. **G. Castano**

11:45 359. Dimensionality of Sense of Belonging in First-Year Chemistry Students. **J. Young**, S.E. Lewis

12:05 Panel Discussion.

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 360. Exploring the relationship between a student's STEM professional identity and their perception and performance in the chemistry laboratory – An analysis across the chemistry curriculum. **M.L. Head**, G. Taasoobshirazi, K.J. Linenberger Cortes, D. Dayani

2:25 361. The Effect of Curricular Intensity on STEM Identity, Academic Persistence, and College Major Stratification. **C.L. Aronson**, **K.R. Black**

2:45 362. Post-Secondary URM STEM Students' Perceptions of Their Science Identity. **S. Nealy**, M. Orgill

3:05 Panel Discussion.

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 363. An S-STEM cohort and activities to foster scientist identity and sense of belonging in chemistry and biochemistry majors. **M.G. Grunert Kowalske**, J.M. Ribble

4:10 364. Using Pen Pals to Normalize Struggle in General Chemistry. **K. Reiser**, M. Weinrich

4:30 365. Understanding the experiences of marginalized women pursuing doctoral degrees in chemistry. **T. Jones**, J.M. Pratt, M. Popova

4:50 Panel Discussion.

5:10 Closing Remarks.

WALC 2051

Teaching Chemistry through Art and Archaeology

K. L. Braun, K. Jansen Labby, Organizers, Presiding

11:00 Introductory Remarks.

11:05 366. Using Art and Archaeology to Demonstrate the Chemistry of Materials in a General Education Course. **J.E. Mihalick**

11:25 367. Taking the Show on the Road: Leveraging Study Abroad to Enhance the Chemistry and Art Curriculum. **M.J. Samide**, A.M. Wilson

11:45 368. Development of learning objectives for a science of art course for non-science majors. **B.G. McBurnett**

12:05 Closing Remarks.

12:10 Lunch.

1:40 Introductory Comments.

1:45 369. Dyeing to Learn Chemistry: Fibers and Dyes in the Chemistry Classroom. **A.H. Gorensek-Benitez**

2:05 370. Curricular Materials on the Chemistry of Pottery, Including Thermodynamic Calculations for Redox Reactions in the 3–Stage Firing Process of Athenian Black– and Red–Figure Vases Produced from the Sixth–Fourth Centuries BCE. **C. Vyhnal**

2:25 371. The Cultural Heritage Science Open Source (CHSOS) database of analytical spectra from archaeological and historical pigments: a free and fun chemistry instructional tool for use in 'chemistry of archaeology and art' courses. **C. Vyhnal**

2:45 372. Synthesis and Analysis of Novel Azo-pigments based on Naphthol AS-G for the Teaching Laboratory. **J.F. Lomax**, S.Q. Lomax

3:05 Closing Comments.

3:10 Break.

3:25 Introductory Comments.

3:30 373. Technical Analysis of Paintings Course and Museum Exhibition. **K. Jansen Labby**, C. Story

3:50 374. Chemistry and Art: An Inquiry Based Travel Course for Non-Science Majors. **C. Theodore**

4:10 375. Using art and archaeology collections to encourage students to find their own voice in the chemistry communication. **P.K. Jue**

4:30 376. Integrating Archaeology and Interdisciplinary Collaborations with Museums throughout the Undergraduate Chemistry Curriculum. **K.L. Braun**

4:50 Panel Discussion.

5:10 Closing Comments.

WALC 2124

Teaching Large Classes

A. Paterno, Organizer, Presiding

11:00 Introductory Remarks.

11:05 377. Creating an Environment for Engaging Students in a Large Chemistry Class. **Q. Liu**

11:25 378. Impact of the Pandemic on Student Readiness: Laboratories, Preparedness, and Support. **J. Garcia**, M.H. Towns

11:45 379. Don't drown in resources: know where the lifevest is. S.M. Taylor

12:05 380. Varying the timing of content introduction to enhance student performance in undergraduate general chemistry. **A. Howcroft**, D. King

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 381. Using the Chem101 app to Enhance Active Learning in General Chemistry. **A. Paterno**

2:25 382. The role of TA mentors in training graduate TAs for large General Chemistry lecture courses. **M.J. Bojan**, L. Funari

2:45 383. Lessons Learned from "flipping" a large-lecture, General Chemistry Course. **A.M. Powe**

3:05 384. The Use of Technology and Team Teaching in a Large Lecture. T. Hidalgo

3:25 Closing Remarks.

3:30 Break.

3:45 Introduction.

3:50 385. Making a large-enrollment class feel smaller: Design and implementation of a new model for introductory chemistry. **K. Welch**, L.M. Columbus, G. Hunger

4:10 386. Assessment and structural strategies for a very large enrollment (1000+), online-only introductory chemistry course. **E. Pelton**

4:30 Panel Discussion.

5:10 Closing Remarks.

BRWN 3102

Community-Based Learning in Chemistry: Implementation, Best Practices, and Evaluation

Y. K. Gorske, *Organizer* E. Lesher, *Presiding*

2:00 Introductory Remarks.

2:05 387. Chemistry for the community: a multi-semester service learning oriented curriculum. **E. Lesher**, Y.K. Gorske, K.A. Bowe, C.F. Bauer

2:25 388. Community-Engaged Learning in First-year Chemistry. D.G. Mitchell

2:45 389. Implementing Environmental Science in Service-Learning Class. **K.M. Deavers**, A. Cutler

3:05 390. Using Creative Exercises (CE) to assess knowledge gains in a multi-year community-based learning (CBL) chemistry curriculum. **Y.K. Gorske**, E. Lesher, A.R. Green, K.A. Bowe, C.F. Bauer

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 391. Student perceptions of chemistry service-learning opportunities across multiple semesters. **K.A. Bowe**, A.R. Green, E. Lesher, Y.K. Gorske, C.F. Bauer

4:10 392. Undergraduate Instructional Resources for Performance of Chemical Demonstrations. **J.W. Dumm**

4:30 393. Professional development during COVID: Interactive webinar trainings to support STEM outreach practitioners. **J.M. Pratt**, **M.L. Cole**, **T.R. Ryan**

4:50 394. Sustainable partnerships with community partners in a service-learning chemistry curriculum. **K. Post**, E. Lesher

5:10 Closing Remarks.

STEW 204

COVID Keepers: Positive lessons learned from the pandemic

M. A. Erdmann, Organizer, Presiding

2:00 Introductory Remarks.

2:05 395. From an emergency pandemic course to an online course: A General Chemistry course in a resource constrained HSI case study. **K. Davila-Diaz**

2:25 396. Lessons learned transitioning High Structure Active Learning (HSAL) in General Chemistry from in-person to remote and back again. **A. Curtis, C. Bliem**

2:45 397. Comparing performance disparities in general chemistry courses taught online and in-person. **T.M. Clark**

3:05 Panel Discussion.

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 398. Fact or fiction: Lessons learnt from teaching high school chemistry online. **S. Akaygun**, S. Celik, F.O. Karatas

4:10 399. Pandemic-related gaps in foundational knowledge normally acquired in introductory chemistry courses. **S. Srinivasan**

4:30 Panel Discussion.

5:10 Closing Remarks.

STEW 307

Designing and Implementing Chemistry Learning Environments that Support Students in Connecting Molecular Behavior to Phenomena

T. M. Kuborn, C. Schwarz, R. Stowe, *Organizers* A. Schafer, *Organizer, Presiding*

2:00 Introductory Remarks.

2:05 400. What Are We Saying? A Self-Critical Analysis of the Messages Communicated by Reformed Curricular Materials. **A. Schafer**, R. Stowe

2:25 401. Chemistry Students Development and Revision of Models to Explain Phenomena. **S. Balbach**, T. Kuborn, A. Schafer, C. Schwarz, R. Stowe

2:45 402. Our Model: High School Students' Discourse When Collaboratively Generating Models to Explain Chemical Phenomena. **J. Timmer**

3:05 Panel Discussion.

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 403. There's More Than One Way to Model: Understanding the many ways students use particle-level representations to explain phenomena. **P. Waples**, A. Schafer, T. Kuborn, R. Stowe

4:10 404. Messaging Within The Classroom: When Student Groups Evolve Practices. **T.M. Kuborn**

4:30 Panel Discussion.

5:10 Closing Remarks.

WALC

Jim Spencer Memorial Symposium

R. S. Moog, Organizer, Presiding

2:00 Introductory Remarks.

2:05 405. A Mentor Model for Undergraduate Research: Life in Jim Spencer's Research Group. **A. Grushow**

2:25 406. Collaborative Writing of POGIL Activities. L. Trout

2:45 407. Towards a Best Version of the AP Chemistry Exam: Reflections on the Work of Jim Spencer. **P.D. Price**

3:05 408. Toward the vision of student-centered assessments in General Chemistry. **S. Garrett-Roe**

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 409. The evolution of POGIL-PCL: workshops, materials, and faculty network. **S.S. Hunnicutt**, A. Grushow, M.N. Muniz, R.M. Whitnell

4:10 410. The SPIRAL (Strengthening the use of Process, Inquiry, Reflection, and Application in the Laboratory) Project for first year inquiry laboratory experiments. **A.B. Mahoney**, E.C. Bucholtz, S. Fiddler, M.P. Garoutte, T.A. Herzog, M.D. Perry, C.M. Teague, M.T. van Opstal, G.H. Webster, R.M. Whitnell

4:30 411. Engaging students in physical chemistry. **R.S.** Cole

4:50 412. Jim Spencer: Teacher, scholar, leader, innovator, mentor, friend. **R.S. Moog 5:10** Closing Remarks.

PMU North Ballroom

General Posters 2

M. T. van Opstal, Organizer, Presiding

5:30 - 6:30

- **413.** Preparation of a dynamic, eight-coordinate, rhenium(V) polyhydride complex; a research-based advanced inorganic laboratory experiment. D.V. Naik, **G.A. Moehring**
- **414.** Exploring green chemistry awareness and knowledge of undergraduates and industrial workers in Lagos metropolis, Nigeria: implications for its integration in school curriculum. **T.E. Owoyemi**, A.M. Akinsete
- **415.** Implementation of Recitations in General Chemistry I Laboratory Courses to Increase Student Performance. C. Lilly, **A.B. Ormond**, **A.A. Carter**, W.J. Powell
- **416.** Evaluations of weekly short metacognitive interventions in first- and second-year chemistry courses. **D.M. Schirch**
- **417.** Chemistry in the kitchen: food-based chemistry labs suitable for in-home exploration. **P.S. Workman**
- 418. Access to Early Research Opportunities in Inorganic Chemistry. J.P. Lanorio
- **419.** Adsorption isotherms, kinetic, and thermodynamic studies of magnetite-charcoal: linearized and non-linearized modeling of experimental data in general chemistry. **R. Zablah-Vasquez**, **S. Simmons**, A. Van Sertima, A. Villalta-Cerdas
- **420.** Learning Chemical Principles with Computational Chemistry: Using Gaussian and GaussView in general chemistry lab and lecture Computer-based activity. **H. Haouari**
- **421.** Student Self-Efficacy Beliefs About NMR Problem-Solving. **S. Kariyawasam Gamage**, J. Cui, S. Mooring
- **422.** Withdrawn
- **423.** The pros and cons of using Jigsaw as a mode of cooperative learning for occupational therapy and biology undergraduate majors in a higher education laboratory setting. **D.S. Derminio**, J. Mirowsky

- **424.** How Students' Perceptions of Faculty Mindset Influences their Motivation, Engagement, and Performance in Introductory Level Chemistry Courses. **R. Kattoum**
- **425.** Student interactions with open-response chemistry tutors. **E. King**, T. Holme, D. Yaron, S. Raysor, M. Benson, J. Sewall, K. Koedinger
- **426.** Determination of five physical constants in the General Chemistry laboratory. **S. Simmons**, L. Hendrickson, A. Villalta-Cerdas
- **427.** Understanding the Learning Gap Between Undergraduate General Chemistry and Organic Chemistry. **T. Williamson**, S. Nedungadi, J.P. Darr, J.A. Conrad, A.D. Gift, A. Miller, D.L. Richter-Egger, E. Tisko
- **428.** Can You Master This?? Initial Attempts at Specifications-based Grading in Introductory Chemistry. **L. Kopff**
- **429.** A Progression on Organic Chemistry Students' Translation Between Reaction Mechanisms and Reaction Coordinate Diagrams about a Set of Acylation Reactions. **K. Barkho**, I. Zaimi, G.V. Szymczak Shultz
- **430.** Workshopping writing skills with interactive 10-minute video lessons. **G. Murray**, M.M. Morgan, E.P. Wagner
- **431.** Instructors' perceptions of the benefits and challenges of systems thinking in chemistry education. **S.E. York**, M. Orgill
- **432.** Creating an Inquiry-Based Lab: Gibbs Free Energy Investigation Using Cobalt(II) Ion. **E.L. Danzeisen**, C.L. Stanford, J.W. Ribblett
- **433.** Undergraduate students value drawing to learn biochemistry. **J. Mitchell**, M. Pennella
- **434.** Chemistry olympiad during COVID pandemic My experience as the coordinator for the Central MA section. **M. Krishnamurthy**
- **435.** Specifications grading: Learning through mistakes. **T. Eaton**
- **436.** Mastery Quizzes as a Tool for Content Retention in Organic Chemistry. **W.E. Brenzovich**, **E.E. Hardy**, W.G. Hollis
- **437.** The effect of gender identity on chemistry identity: Amplifying nonbinary voices. **V.A. Montalti**, I.M. Lopez, J.H. Carmel

- **438.** Employing research-based teaching practices for enhancing faculty-student engagement. **M. Abdel Latif**, J. Sinutko, E. Nyutu
- **439.** Classroom Activities and Strategies for the Flipped Analytical Chemistry Course. **C. Edwards**
- **440.** A Curriculum Embedded Framework for Metacognitive Development. **S. Gamby**, C.F. Bauer
- **441.** Implementation of Three-Dimensional Learning assessments for in-person, remote and online general chemistry courses. **M.M. Gillespie**, S.M. Underwood, J.H. Carmel
- **442.** The use of perovskite nanocrystals across the chemistry curriculum. **R. Sanchez-Gonzalez**
- 443. InChI OER. R.E. Belford, J. Cuadros, A.P. Cornell, T. Gupta, E.C. Bucholtz
- **444.** Incorporating Spectroscopy Throughout General and Organic Four-Semester Sequence. **D. Marell**, M. Nelson, X. Prat-Resina, D. Butani, T.F. Doherty

TUESDAY

WALC B066

Beyond Classroom Observation

J. Velasco, Organizer, Presiding

8:00 Introductory Remarks.

8:05 473. A qualitative study to capture classroom patterns/behaviors based on COPUS. **Y. Muten**, J. Harshman

8:25 474. Student Interaction Discourse Moves: Characterizing and visualizing student discourse patterns. **N.E. States**, **H.T. Nennig**, M. Montgomery, S. Spurgeon, R.S. Cole

8:45 475. Inquiry Into Teacher Practices: A Rasch Based Observational System for Science Classroom. **Y. Chen**, Y. Yin, S.M. Werner, M. Stieff

9:05 476. An Overview of External Review. R.C. Dudek, K. Pate

9:25 Closing Remarks.

WALC 3121

Engaging Non-Majors in Introductory Chemistry Courses

M. Mullen Davis, Organizer, Presiding

8:00 Introductory Remarks.

8:05 565. Superhero science. S. Pierce

8:25 566. Using the covid-19 phenomenon to improve students' connection to the nature of science. **G. Kerstiens**

8:45 567. Scientists who change the world. K. Hess, L. Burt-Nicolas

9:05 568. Increasing student engagement in a non-major introductory chemistry course by writing children's books. **M. Mullen Davis**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 569. Using themes to engage non-science majors in introductory chemistry: from nuclear and radiochemistry to scientific literacy and the science of superheroes. **B. Shepler**, C.L. Anfuso, R. Simmons

11:25 570. The Chemistry of Art & Color – A Course for the Non-Major. K. Kostecka

11:45 571. A well-balanced course: Incorporating collaborative learning and community service into a food chemistry course. **H.V. Clontz**

12:05 572. Development of an Online Chemistry and Sustainability Class for Non-Majors at UW - Green Bay. **J.E. Kabrhel**

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 573. Framing scientific literacy as a pathway to environmental justice. S. Brown

2:25 574. Creating authentic learning experiences in an online non-majors chemistry lab. **U. Swamy**

2:45 575. Building a brain: helping pre-service elementary teachers find their place in science education. **K. Rust**

3:05 576. Life is a candle: Connecting chemistry and philosophy in a cross-disciplinary learning community for undergraduate science majors. **B.G. McBurnett**, P. Lewis

3:25 Closing Remarks.

WALC 3090

Present and Future Directions in Organic Chemistry Laboratory Courses

C. S. Callam, N. M. Paul, Organizers, Presiding

8:00 Introduction.

8:05 609. Choose-Your-Own-Adventure Virtual Organic Chemistry Labs Through the Story-Game Program Twine. **S. Saluga**, H. Peacock, D. Seith, R.D. Link

8:25 610. How a Journal of Chemical Education article changed my perspective on Organic laboratory experiments 34 years ago, and what I've done in my labs since. **B.A. Hathaway**

8:45 611. Leveraging Undergraduate Learning Assistants for the Return to In-Person Labs. **J. Griffin**, P. Lopez, R.D. Link

9:05 Panel Discussion.

9:25 Closing Remarks.

9:30 Break.

11:00 Introduction.

11:05 612. Computer-Aided Drug Design for the OChem Lab Using Accessible Molecular Modeling Tools. **R.J. Yoder**

11:25 613. A colorful comparison of in person vs. distance learning assessment in an Organic Chemistry Extraction Laboratory. **M. Grimminger**

11:45 614. Multiple short polymer experiments for the undergraduate organic chemistry laboratory. **M.R. Korn**, M.F. Scilley

12:05 Panel Discussion.

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introduction.

2:05 615. Evaluating reaction conditions for the Buchwald-Hartwig coupling. **N.J. Hill**

2:25 616. Synthesis of 4-(Dimethylamino)benzyl Alcohol via Vilsmeier-Haack Formylation Reaction. An Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students. **V.A. Sichula**

2:45 617. Photocatalytic Isomerization of (E)-2-nitrocinnamaldehyde Using an Inexpensive Open-Source Photoreactor. P. Lampkin, A. Xu, B.J. Esselman, N.J. Hill

3:05 Panel Discussion.

3:25 Closing Remarks.

STEW 302

Active Learning in Organic Chemistry

A. Leontyev, *Organizer*M. D. Casselman, V. M. Maloney, J. L. Muzyka, C. Welder, *Presiding*

8:00 Introductory Remarks.

8:05 445. Active Learning in Organic Chemistry: Let the adventure begin!. **S.M. Strickland**

8:25 446. Transparent Teaching in Organic Chemistry. M. Kelley

8:45 447. Active-learning and Traditional Lecture Outcomes – A Direct Comparison in a Transformed Learning Environment, Part 1. **B.J. Esselman**, R. Stowe, A. Ellison, J. Martell, E.D. Greenhalgh, K. DeGlopper, C. Schwarz, N.J. Ellias

9:05 448. Active-learning and traditional lecture outcomes – A direct comparison in a transformed learning environment, Part 2. **C. Schwarz**, K. DeGlopper, N.J. Ellias, R. Stowe, B.J. Esselman, A. Ellison, J. Martell, E.D. Greenhalgh

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 449. Organic Chemistry Successes and Failures—Sustaining relevance, Teaching for equity, Useful resources. **A. Steelman**

11:25 450. Everything Is Connected: Teaching Organic Chemistry as a Unified Story through Mechanisms, A Mechanistic Approach to the Organic Chemistry Curriculum Based on Patterns of Electron Flow. **R.N. Salvatore**

11:45 451. Solicited and Unsolicited Use of Molecular Models in the Organic Chemistry Curriculum. **M. Nelson**, D. Butani, D. Xue

12:05 452. Simulated Drug-Discovery Workshops: Development of a C/PBL activity that replicates the hit-to-lead optimization process in a classroom environment. **R. Blackburn**, S. Flower

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 453. Using Distractor Analysis and Backward Design to craft a new activity on Structural Isomerism. **A.M. Pesce**, D. King

2:25 454. Create, Share, Solve: promoting engagement & collaborative learning through group crossword puzzle tasks. **R.J. Pearson**

2:45 455. It's not just me! Using international partnerships to maintain active learning during the global pandemic. **M.T. Wentzel**, B. McCollum, L.A. Morsch, M. Gelata, H. Hussen

3:05 456. Collaborative Exams – Active Learning on Test Day. **G.E. Ferris**, J.M. Karty

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 457. Flipping a two-semester organic chemistry sequence to reduce DFW rates and support instruction during the pandemic. **D.M. Schirch**

4:10 458. Gathering resources and planning for a foolproof flipped classroom. **L. Starkey**

4:30 459. Use of iClicker for flipped organic chemistry courses for in-person, online, and HyFlex classes. **J.M. Leslie**

4:50 460. How active learning practices improved academic performance in Sophomore Organic Chemistry in spite of 2020: A Comparison of Fall 2019 and Fall 2021. **C. Serrano**

5:10 Closing Remarks.

WALC 2007

Biochemistry Education: Discussions of the lecture learning environment

R. Austin, T. A. Murray, Organizers, Presiding

8:00 Introductory Remarks.

8:05 477. Protein of the Year: Assessing skill-development in Biochemistry. **K.** Culhane

8:25 478. Building science identity one hemoglobin molecule at a time. **C.J. Conway**, K. Boyle

8:45 479. Engaging students in scientific literature review and structure visualization through the writing of molecular case studies. **E. Pollock**, K. Riley, D. Vardar-Ulu, S. Dutta

9:05 480. Fostering intellectual equity in an introductory biological chemistry course by engaging student-created activities. **S. Testa**

9:25 Closing Remarks.

9:30 Break.

- 11:00 Introductory Remarks.
- **11:05 481.** Enacting team-based learning in upper-division biochemistry lecture courses: Key considerations and evidence of success. **E. Offerdahl**, J. Woodbury, J. Arneson
- **11:25 482.** Integrating best practices into a Biochemistry course to create a student-centered classroom. **K. Slade**
- **11:45 483.** Utilizing active learning strategies to enhance student understanding of foundational concepts in biochemistry. **M. Kopecki-Fjetland**
- 12:05 Panel Discussion.
- **12:25** Closing Remarks.
- 12:30 Lunch.
- **2:00** Introductory Remarks.
- **2:05 484.** Teaching carbohydrate metabolism in biochemistry using contemporary examples of synthetic and natural sweeteners. **A.E. Shinnar**
- **2:25 485.** Integrating contextualization, scaffolding and active learning: A trifecta approach in enhancing health science students' cognition and affect towards biochemistry. **K. Fernandez**, C. Thompson, N. Samarawickrema, T. Overton
- **2:45 486.** Gamifying Biochemistry: Do games support student learning?. **D. Emmert**
- 3:05 Panel Discussion.
- **3:25** Closing Remarks.
- 3:30 Break.
- **3:45** Introductory Remarks.
- **3:50 487.** Demonstrating biochemical mechanisms using student movement. **M. Mullen Davis**
- **4:10 488.** Connecting the Dots: Students' Mental Organization and Storage of Biochemistry Visual Literacy Skills. **C. Terrell**, A. Aguirre Lopez, V. Andrade, N.A.

Bobick, J. Contreras Vital, A. Erickson, C. Fondie, A. Lawrence, C. Morin, X. Prat-Resina

4:30 489. Incorporating "Molecular Case Studies" into large biochemistry courses. **D. Vardar-Ulu**, A. Lebov, E. Pollock, S. Dutta

4:50 Panel Discussion.

5:10 Closing Remarks.

STEW 311

Building Momentum for Systemic Change (#AdvancingEquityinCER)

S. M. Werner, *Organizer*M. E. Howe, V. R. Ralph, C. Stachl, *Presiding*

8:00 Introductory Remarks.

8:05 490. A broader take on Trigwell and Prosser's conceptions of teaching and learning: relating instructors' thoughts on diversity in higher education to their conceptions of teaching and learning. **A. Heidbrink**, N. Suarez, S.M. Lo

8:25 491. A seminar series that enhances a chemistry degree by supporting students and developing their soft skills. **M.A. Vanalstine-Parris**

8:45 492. An Interdisciplinary Peer-Mentoring Program to Promote Inclusive Teaching Practices at a Small Liberal Arts College. **J. Fishovitz**, M. Schaeffer, J. Coblentz, S. Mancino, R. Rohatgi

9:05 493. Elements of equity and opportunities for equitable reform in chemistry instruction. **A. Margiotta**, C.E. Brown

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 494. Examining the STEM institution from the perspective of parenting women in STEM doctoral programs: An Institutional Ethnography. C.E. Wright

11:25 495. Graduate Student Women's Perceptions of Faculty Careers in Chemistry. **M.E. Howe**, M.M. Kim, S. Pazicni

11:45 496. STEM Career Perceptions of Black/African American, Latina/o/x, and Puerto Rican Graduate Students. **J.M. Ribble**

12:05 Panel Discussion.

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 497. For whom do we design? Considering culture, reflexivity, and partnership within the design process. **J.L. Spencer**, D.N. Maxwell, G.V. Szymczak Shultz

2:25 498. Caught between two worlds: Graduate school for Black and Latinx STEM students at PWIs. **M.G. Grunert Kowalske**

2:45 499. Navigating within the Borderlands: Experiences of Historically Marginalized Graduate Students within a Chemistry Doctoral Program. **J.E. Nardo**

3:05 500. Professional, Inclusive, Engaged, and Research-Based Reforms in Science, Technology, Engineering, and Mathematics. **V.R. Ralph**

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 501. How Individual Change Can Build Momentum for Systemic Change. **J. Tashiro**, V. Talanquer

4:10 502. Making invisible work visible and valued: creating a model to measure and report the impact of invisible work in academia. **S. Jilani**

4:30 503. Unfreezing equity for general chemistry curriculum and instructional reform. **T. Pesavento**, **S. Pazicni**, S. Block, J. Moore, J.M. Trate, E. Garand, J. Zhou

4:50 504. Course redesign for inclusive excellence: a framework for engagement. **S.L. Debbert**

5:10 Closing Remarks.

WALC B058

Chemistry Education Research: Graduate Student Research Symposium

M. Connor, O. Crandell, *Organizers, Presiding*C. G. Carlson, E. L. Day, M. Herridge, S. Houchlei, Y. Liu, M. Popova, T. Qu, P. Vincent-Ruz, L. Wright Ward, *Presiding*

8:00 Introductory Remarks.

8:05 505. Characterizing Chemistry Students' Domain-General Symmetry Knowledge. **A. Sangha**, S. Pazicni

8:25 506. Qualitative investigation of student attention to molecular structure features when prompted to consider symmetry. **R. Morgenstern**, S. Pazicni

8:45 507. Unprompted Student Gestures in a Model-Based Inorganic Symmetry Activity. **J.J. Markut**, D.J. Wink

9:05 508. Emphasizing the role of coordination class theory on the study of student learning with representations. **S. Spurgeon**, M. Stieff

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 509. Presenting a Progression on Organic Chemistry Students' Translation between Reaction Mechanisms and Reaction Coordinate Diagrams. **I. Zaimi**, K. Barkho, G.V. Szymczak Shultz

11:25 510. General Chemistry Students' Data Analysis and Interpretation of Graphical Data. S. Berg, A.C. Moon

11:45 511. Understanding how changing molecular representations impact students' process of predicting the location of strongest intermolecular forces. **A. Farheen**, H.T. Nguyen, S.E. Lewis

12:05 512. Using eye-tracking technology to measure three kinds of cognitive load during organic chemistry problem-solving. **Y. Lu**, J.J. Stewart

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 513. Investigating STEM student responses to the PISQ-5D survey: A mixed methods approach. **C. Bechard**, T. Legron-Rodriguez, N. Lapeyrouse

2:25 514. Measuring the graduate school self-efficacy of Latinx undergraduates. **J.L. Rivera-Colon**, M.E. Howe, S. Pazicni

2:45 515. Exploring achievement emotions of general chemistry students. **A. Graves**, C.E. Brown

3:05 516. Student Experience in the UIC STEM Initiative CoLab Program. **A. Wierzchowski**

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 517. Cognitive Engagement in Small-Group General Chemistry Activities: Application of Qualitative Content Analysis and the ICAP Framework to Group Conversations. **S. El-Mansy**, J. Barbera, A. Hartig

4:10 518. A literature review of studies analyzing chemistry textbooks. **Z.L. Bunch**, B. Thompson, M. Popova

4:30 519. Development of Rubrics for Evaluating Students' Data Analysis and Interpretation. **M.T. Urbanek**, B. Couch, L. Prevost, A.C. Moon

4:50 520. Student expectations, buy-in, and engagement in lower division undergraduate chemistry labs. **E.B. Vaughan**, J. Barbera

5:10 Closing Remarks.

WALC

B058

Computational Chemistry in the Classroom

J. B. Dudek, A. N. Migues, Organizers, Presiding

8:00 Introductory Remarks.

8:05 521. Overcoming the barriers to using computational chemistry in your classroom. **K.R. Gallagher**

8:25 522. Exploring electron configurations of atoms and ions with WebMO and Gaussian. **K. Range**

8:45 523. Computational chemistry as part of the first-year undergraduate curriculum. **J.B. Foresman**, K. Howard

9:05 524. Introducing computational chemistry to General Chemistry freshmen vs. Physical Chemistry seniors. **D.V. Chulhai**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 525. Computational Exercises in Physical Chemistry: From Gaussian to the WebMO Mobile App. **S.M. Basu**

11:25 526. Blended lab for use in undergraduate chemistry courses: The influence of solvent polarity on the cis-trans isomerization of 4-anilo-4'-nitrobenzene. **A.N. Migues**, J.B. Dudek

11:45 527. Computational Chemistry Calculations of the Molecular Charge Distribution and Dipole Moments of Solvatofluorchromic Dyes for the Physical Chemistry Curriculum. **B. Findley**, R. Pawlaczyk

12:05 528. Withdrawn

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 529. Introducing the dihedral angle of H2O2 through computational chemistry. **C. Salter**

2:25 530. Using computational chemistry to peer through the window at molecules responsible for the greenhouse effect. **L. Tribe**, K.R. Gallagher

2:45 531. Creating your own chemistry simulations is easier than you think. **W.J. Vining**

3:05 532. Using the Compute-to-Learn Pedagogy in Physical and General Chemistry Courses. **H.P. Hendrickson**

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 533. Visualizing potential energy surfaces to deepen chemical understanding. **J.L. Sonnenberg**

4:10 534. Computational Chemistry in the Inorganic Classroom: Using WebMO and Gaussian to Teach Group Theory. **A.C. Davis**, J.M. Smith

4:30 535. Using Computational Software to Model Concepts in Organic Chemistry Lecture. **D.C. Bromfield-Lee**

4:50 Panel Discussion.

5:10 Closing Remarks.

WALC 2051

Culturally Relevant and Inclusive Chemistry Curriculum and Pedagogies

J. L. Muzyka, Organizer, Presiding

S. Sanders, L. Winfield, *Presiding*

8:00 Introductory Remarks.

8:05 536. Fostering Diversity and Inclusion and Understanding Implicit Bias in Undergraduate Chemical Education. **A. Nakamura**

8:25 537. Inclusive course design to support student success in organic chemistry: Development, implementation, and evaluation of resources and assessments. **D.A. Turner**

8:45 538. Tips on increasing the diversity, equity, and inclusivity of your chemistry classroom and curriculum. **M. Livezey**

9:05 539. Practical applications of Universal Design for Learning (UDL) in First-year Chemistry. **D.G. Mitchell**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 540. Inclusive Chemistry: Storytelling, Vibranium and Equity. **S.N.** Collins, T. Steele, M. Nelson

11:25 541. Teacher ethnicity: reflections on awareness and representation. M. Navarro-Camacho

11:45 542. Creating space for culture in the science classroom: Power dynamic patterns during a classroom-based, culturally relevant research project. **K. Hosbein**, J. Spencer, D.N. Maxwell, G.V. Szymczak Shultz

12:05 Panel Discussion.

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 543. Sign Language Incorporation in Chemistry Education (SLICE): How efforts made to include a few have rippling effects for many. **T. Goudreau Collison**, J. Swartzenberg, A. Sheikh, K. Clark, A. Gleason, C. Cummings, J. Dominguez, M. Mailhot

2:25 544. Challenges and Removing Barriers in the Undergraduate Chemistry Curriculum for Blind and Low Vision Students. **A.T. DAgostino**

2:45 545. Course-level social belonging: Effects on student performance and persistence in General Chemistry. **R. Frey**, A. Fink, J. Edwards

3:05 546. A Comparison of Perceptions of Chemistry and Chemistry Self-Efficacy among General Chemistry Students from Two Settings. **S.B. Wilson**

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 547. Curating Connections between the Chemistry Curriculum and Student's Lives. **S. Sanders**

4:10 548. Linking chemistry to the community: Integration of culturally-responsive teaching into general chemistry I laboratory. **A.J. Winstead**

4:30 549. Using environmental chemistry to engage students in scientific thinking while affirming their cultural context. **J.L. Spencer**, D.N. Maxwell, L. Nicholas-Figueroa, K.A. Pratt, G.V. Szymczak Shultz

4:50 550. Incorporating inclusive teaching practices in the design of a course-based undergraduate research experience in polymer chemistry. **A. Abdulahad**

5:10 Closing Remarks.

WALC B093

Disrupting Grading

R. D. Link, Organizer, Presiding

8:00 Introductory Remarks.

8:05 551. Specifications Grading in Organic Chemistry. J.L. Muzyka

8:25 552. How To Earn Your Specs Grading Retakes (So That You Won't Need Them). **J.R. Ring**

8:45 553. And the points don't matter: Specifications grading in a summer accelerated organic lecture course. **R.D. Link**

9:05 Panel Discussion.

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 554. Specifications-based Grading in Intermediate Organic Chemistry. **S. Zingales**

11:25 555. A grading system for organic chemistry to focus student learning and reduce student stress. F.M. Rossi

11:45 556. Ungraded in Organic I: Lessons and Suggestions. T.D. Gaines

12:05 557. Adaptive grading: Using a simple R script to more fairly and equitably assign grades in organic chemistry. **S.M. King**

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 558. An Integrated Approach to Grading Using Peer Learning Assistants to Facilitate Mastery of Course Outcomes. **D.A. Barr**

2:25 559. A flipped classroom with (almost) mastering learning, learning outcomes assessments, and equity grading. **J. Collins**

2:45 560. Specifications Grading and Practical Examination in Organic Chemistry I Lab at Trine University. **D.A. Quist**, **S.B. Dulaney**

3:05 561. How Student Buy-In to Specifications Grading Changes Throughout a Term. **W.J. Howitz**

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 562. Leaving exams behind: Presentations as assessment. S.S. Hunnicutt

4:10 563. Hybrid Grading Methods in Organic Chemistry. L.J. Martin

4:30 564. Group and Speed-Dating Models for Cooperative Formative Exams. **P. Smith, R. Clark**

4:50 Panel Discussion.

5:10 Closing Remarks.

STEW 306

General Chemistry Lab: Curriculum and Best Practices

J. Maeyer, Organizer, Presiding

8:00 Introductory Remarks.

8:05 593. Design, Management, and Implementation Strategies in General Chemistry Labs. **C. Rezsnyak**

8:25 594. Characterizing student engagement with scientific practices in a project-based, cooperative general chemistry laboratory. **O.H. Judd**, D.E. Blumling, B. Boardman, C.A. Hughey

8:45 595. Linking Core Concepts and Competencies: Towards An Integrated Framework for General Chemistry. **S.A. Reid**, V.S. Vyas

9:05 596. Designing new undergraduate teaching labs at Arizona State University (ASU) to support pedagogical improvements in general chemistry instruction. **B. Smith**, R. Briggs, S. Sendler

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 597. Best practices for teaching general chemistry lab at a diverse, minority serving institution. m. khural

11:25 598. Student-based Experimental Design in the General Chemistry Lab: Use of the Scientific Process to Propose New Labs Highlighting the Chemistry Underlying Global Environmental Challenges. K. Connelly, A. Prasad

11:45 599. What Comes Next: Increasing Use of Instrumentation and Recurring Chemical Systems of Study to Serve Students Staying in STEM. **S. Block**, P. Doolittle, B.J. Esselman, E. Garand, L. Gustin, S. Pazicni

12:05 600. Teaching thermochemistry through experiments and demonstrations. **A.E. Shinnar**, M. Weitz, R. Bienenstock

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 601. The Use of a Lab Practical as a Formative and Summative Assessment. **E. Marlier**

2:25 602. General chemistry lab practicals at Augusta University. **S.A. Myers**, A.C. Spencer, C. Eidell

2:45 603. Microsoft Excel in the General Chemistry Laboratory. K. McElhoney

3:05 604. Eliminating reports in general chemistry lab: Using small assignments to teach and assess understanding. **J. Maeyer**

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 605. Computer-Assisted Lab Experiments in a Two-Year College Setting. **R.** Fealy, M. Michalovic

4:10 606. Adapting the Classics: New Calorimetry and Concentration Determination Experiments. **C.J. Sobers**, J. Harrell, D. Garandouka, A. Sahoo, A. Karagiannis, O. Kucukosman

4:30 607. So what if my lab looks like a stock photo for chemistry: Food dyes and HPLC in the general chemistry laboratory. **G.R. Wyllie**, S. Palme, A.H. Johnson

4:50 608. A Libretexts based electronic lab manual involving IOT enhanced experiments connected to Google workbooks. **L. Poirot**, E. Lisitsyna, R.E. Belford

5:10 Closing Remarks.

BRWN 3102

An Early CURE: Course Based Undergraduate Research Experiences in General Chemistry.

G. R. Wyllie, Organizer, Presiding

8:00 Introductory Remarks.

8:05 461. What's in your water? A CURE for general chemistry students. D. Behmke

8:25 462. Brewing up engagement in the General Chemistry laboratory: a semesterlong pre-CURE course focused on the chemistry of beer. **D.E. Blumling**, C.A. Hughey, B. Boardman, O.H. Judd

8:45 463. A scaffolded gold nanoparticle CURE in a general chemistry laboratory. **K.L. Stone**

9:05 464. Including X-ray diffraction in traditional and research-based undergraduate chemistry labs. **P. Woodward**, T.M. Clark, T. Weaver, R.A. Ricciardo

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 465. Remediation of metal ions using modified cellulose - A first semester general chemistry CURE project. **J.A. Conrad**, S. Kerkman

11:25 466. Creating a connected CURE - linking student research teams in general chemistry across space and time. **G.R. Wyllie**

11:45 Panel Discussion.

12:25 Closing Remarks.

WALC 1055

Assessment and Measurement in Research and Practice

K. L. Murphy, J. R. Raker, Organizers, Presiding

8:00 Introductory Remarks.

8:05 467. How does an early math review impact a student's arithmetic skills and performance in first-semester general chemistry? T.E. Alivio, E. Howard, B. Mamiya, **V.M. Williamson**

8:25 468. Item analysis of Math up Skills Test (MUST) questions after an early math review in a first-semester general chemistry class. **T.E. Alivio**, C.E. Galloway, B. Mamiya, V.M. Williamson

8:45 469. Math skills, GPA, and first exam scores: Predictors of success in first-semester Organic Chemistry. **K. Lee**, B. Rix

9:05 Panel Discussion.

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 470. Using a web-based STEM assessment platform in a controlled environment to administer General Chemistry examinations efficiently and securely for a large, multi-sectional class. **J.C. Rienstra-Kiracofe**, D. Steffen, B. Carmichael, M. Miller, C. Wright, W. Grauvogel, A. Poore, N. Pizzala

11:25 471. Construction and Assessment of Cumulative Final Exams in General Chemistry. **C. Rezsnyak**

11:45 472. The Impact Online, Standards-based Homework Assignments have on Student Homework Completion and Academic Self-Reflection in a High School Science Classroom. **C. Evans**

12:05 Panel Discussion.

12:25 Closing Remarks.

WALC 1018

Evidence-based Instructional Practices: Claims, evidence, reasoning (CER) and Argument-driven inquiry

K. E. Carrigan, A. Modic, M. Orgill, S. Pazicni, *Organizers* J. P. Walker, *Presiding*

8:00 Introductory Remarks.

8:05 577. The Argument-Driven Inquiry instructional model: A brief overview, its origin, and some ways it has been refined over time. **V. Sampson**

8:25 578. Research on student learning during Argument-Driven Inquiry: Some findings from studies conducted in middle and high school classrooms. **V. Sampson**

8:45 579. Laboratory Learning and Research: 10-years of research on Argument-driven inquiry in post-secondary education. **J.P. Walker**

9:05 580. The transformation of introductory science laboratories from traditional to Argument-Driven Inquiry at East Carolina University: Avoiding barriers for successful large-scale change. **K. Hosbein**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 581. Hybrid ADI-SWH Labs: Bringing together the best of both worlds. **D.I. Del Carlo**

11:25 582. Loose in the Lab? Inquiry Implementation in the High School Classroom. **A. Modic**

11:45 583. Argument Driven Inquiry with a theme and specifications grading in general chemistry laboratory. **K.D. Edwards**

12:05 584. Implementing argumentation sessions in an upper division laboratory course. **M.N. van Staveren**, L. Kesner

12:25 Closing Remarks.

BRWN 1154

Gateways to success: Initiatives and programs to support STEM diversity

V. L. Miller, C. P. Schick, P. M. Takahara, *Organizers* L. J. Anna, *Organizer, Presiding*

8:00 Opening Remarks.

8:05 585. NASA Day Events Promote Science in the Community. C. White

8:25 586. Teaching Chemistry to Underrepresented Middle School Students in an Informal STEM Program. **M. McColgan**

8:45 587. Design of a STEM Workshop Focused on Natural Products for Middle School and High School Students. **H. Albright**

9:05 588. Strategies Aimed at Increasing Chemistry Undergraduate Enrollment. **T. Porter**, E.C. Long

9:25 Closing Remarks.

9:30 Break.

11:00 Opening Remarks.

11:05 589. Exploring alternative preparation and co-requisite support course models to open the gate to general chemistry. L.J. Anna, V.L. Miller

11:25 590. A Different Flavor of 'Swirl': Supporting Instructors Teaching Gateway STEM Courses Across Institutions. E.A. Boyd, B.G. Trogden, S. Stefl, K.A. High

11:45 591. The Ramps-into-Research Collaboration: a Pilot-Project of the STEM Center at Sam Houston State University. **D.E. Thompson**, F. Yildiz, T.M. Trad, K. Trotter

12:05 592. Withdrawn

12:25 Closing Remarks.

BRWN 3100

Project Orientated Undergraduate Lab Design

A. L. Courtney, R. Loy, Organizers, Presiding

8:00 Introductory Remarks.

8:05 618. Towards Course Based Undergraduate Research in Advanced General Chemistry Laboratory. **J. Nelson**, B. Abrams

8:25 619. Project-oriented lab design to integrate drug discovery research methods into the organic chemistry laboratory. **A.L. Courtney**, K. Bushell

8:45 620. Organic Chemistry Laboratory Capstone Projects. R. Loy

9:05 Panel Discussion.

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 621. A two-stage project orientated redesign of an introductory biochemistry laboratory. **D. Vardar-Ulu**

11:25 622. High Point University Advanced Topics Laboratories: Interdisciplinary Lab Courses Designed to Engage Students with Cutting-Edge Topics and Laboratory Experiences. **B. Augustine**, M.S. Blackledge, P.M. Lundin, K.H. Fogarty

11:45 623. Investigations of nanoparticle applications: An undergraduate experiment probing filtration effectiveness of Acid Prepared Mesoporous Spheres (APMS). **M. DiPinto**, C.C. Landry

12:05 Panel Discussion.

12:25 Closing Remarks.

BRWN 3104

Using Eye-tracking technology as a magnifying glass to investigate learners' cognition

M. Atkinson, S. J. Hansen, K. L. Havanki, J. R. Vandenplas, M. Weinrich, *Organizers* N. Graulich, *Organizer*, *Presiding*

8:00 Introductory Remarks.

8:05 624. Investigating undergraduate organic chemistry students' use of cognitive resources during stereochemical tasks through eye tracking. **A. Corrales**, A.S. Allen, M. Atkinson

8:25 625. "I've derived them logically": Exploring students' drawing processes of resonance structures in organic chemistry via eye-tracking. **I. Braun**, A. Langner, N. Graulich

8:45 626. Modifying Particulate-level Animations Using Eye-tracking Technology. **S. Akaygun**, J.R. Vandenplas

9:05 Panel Discussion.

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 627. Using eye-tracking to investigate the task dependency of visual attention during cognitive tasks in organic chemistry. K.L. Havanki

11:25 628. How have I solved the problem? An eye-gaze augmented retrospective to foster students' comprehension of organic chemical representations. A. Langner, N. Graulich

11:45 Panel Discussion.

12:25 Closing Remarks.

PMU

North Ballroom

General Posters 3

M. T. van Opstal, Organizer, Presiding

9:30 - 10:30

629. Agar Art as an Instructional Tool to Teach Inducible Promoters via Fluorescence Protein Expression. **L. Jefferies**, A.N. Giordano

- **630.** Computation exercises for undergraduate students to learn about molecular geometry, and formal charges (Freshmen and Sophomore level) as well as Temperature Dependence of Heat Capacity (Junior and Senior) levels. **F.M. Chen**
- **631.** Lessons Learned: Constructing new Chemistry Program Learning Outcomes. **R.M. Kelly**, P. Dirlam, M.R. Radlauer
- **632.** It takes a village to embed interprofessional skills into the chemistry curriculum.. **A.E. Kondo**, J. Fair, M. Benjamin, K. Bohl, R. DeSoto Jackson, M. Hildebrandt, R. Major, H. Molina
- **633.** Barriers to Incorporating More Chemistry Content by Elementary School Teachers. **A. Alveshere**, R. Waterman
- **634.** Launching a middle school STEM academy lessons learned. **J. Henderleiter**, L. Kasmer, A.L. Masko, K. Pachla, T. Shreiner, J. Vigna, G.D. Warsen, P.W. Yu
- **635.** Investigating English Language Learners Engagement and Challenges in a Process Oriented Guided Inquiry Learning (POGIL) Based General Chemistry Class. **S. Zakher**
- **636.** It's a Square, Nautical Analogy, and the Equilibrium AttraKor: Innovative Tactics to Approach Some Common General Chemistry Topics.. **J.F. Lomax**
- **637.** Development of a multistep synthesis of imrecoxib, rofecoxib and zolimidine as a versatile capstone project for the organic chemistry laboratory. **J.I. Juncosa**, L. Black, W. Turner, T. Martin
- **638.** Impacts of intentional journaling on high school science learners. **C. Evans**
- 639. Using a cumulative review problem in general chemistry. M.D. Fritz
- **640.** Design, Cloning, Expression and Purification of two OprF Epitope Fusion Proteins as Potential Targets for Vaccines against *Pseudomonas aeruginosa*: A Course-Based Undergraduate Research Experience in Biochemistry I. **T. Sucheck**, B. Hoobler, M. Stanley, T. Sullivan
- **641.** Beyond the drawn structures: Investigating students' reasoning with own resonance drawings in organic case comparison tasks. **I. Braun**, N. Graulich
- **642.** Reinforcing linguistic accessibility in chemistry: Developing more equitable assessment items. **A. Stephens**, **A. Pares Alicea**, E. Lee

- **643.** An at-home enzymes kinetics simulation using yeast fermentation. S. Gilpatrick, **S. Dew**
- **644.** Leveraging journal article use in gen chem lab assignments to improve students' study skills. **D. Fisher**
- **645.** Academic Persistence to Graduation: Past, Present, and Future for Undergraduate Students. **C.L. Aronson**, **K.R. Black**
- **646.** Integration of evidence-based learning strategies in chemistry bridge courses at Sam Houston State University. **A. Villalta-Cerdas**, S.L. Hegwood, D.E. Thompson
- **647.** Do students think employer-desired competencies can be developed in online general chemistry labs?. **B. Eggly**, P. Patterson-Lee, L.A. Posey
- **648.** Connections between intermolecular forces and chemical separation/adsorption/purification: An example of teaching forces in liquids and solids by systems thinking. **C. Wang**
- **649.** Impacts of the 2021 and 2022 Active Learning in Organic Chemistry Workshops. S.E. Ruhe, **J. Houseknecht**
- **650.** Understanding Energy Across Disciplines. **M. Kimball**, M. Gosselin, K. Warner, S. Virtue, **T.A. French**
- **651.** Learning the chemistry of ceramics and pottery via a field trip. V. Gupta, S. Kumar, **M. Nigam**
- **652.** Reducing researcher bias: Participant-driven visual representation in qualitative education research. **E.A. Boyd**, K.B. Lazar, M. Voigt
- **653.** Repairing the Reputation of the STEM Teaching Profession through the Use of Get the Facts Out Teacher Recruitment Materials. **J. Breakall**, L. Grande, D. May, W.K. Adams
- **654.** Creating a Forensic Chemistry Capstone for General Chemistry students. **S. Parrott**
- **655.** Investigating supports and barriers in chemistry classroom materials for English Language Learners (ELLs) at a Hispanic Serving Institution. **D.R. Martinez Rioseco**, J.H. Carmel

- **656.** Toward the quantification of serotonin in crayfish hemolymph by gas chromatography mass spectrometry (GC-MS). E. Lovins, **L.H. Mielke**
- **657.** Engaging Teens in Career Exploration and STEM Leadership through Formal/Informal Education Partnerships. **B. Oatman**
- **658.** Scaffolding a Successful Chemistry Lab Curriculum. **A. Altemose**, E. Lee, A.C. Songok
- **659.** Using Gradescope to Probe Student Understanding and Facilitate Consistency in Grading. **D. Marell**, X. Prat-Resina
- **660.** Utilizing student attitude in introductory STEM courses: A closer look into General Chemistry I student feedback. **C.D. Glenn**, P.M. Clevenger, D.S. Williams
- **661.** General Chemistry Lab Design Creating Inquiry-Based Experiences for Gen Chem 2 Students. **S. Beechboard**, C.L. Stanford, J.W. Ribblett

STEW 206

A Contextualized Approach to Teaching Chemistry

B. D. Fahlman, Organizer, Presiding

11:00 Introductory Remarks.

11:05 662. Design of interactive videos for a context-first chemistry course. **B.D.** Fahlman

11:25 663. Perusall: A social reading annotation platform that connects students in contexts that matter. **J.M. Buth**

11:45 664. Inspiring students with sustainable invention. J. Butler, K. Anderson

12:05 665. Assessing students' critical thinking skills with a molecular design project. **S. Sun**

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 666. Real-world related assignments in lower and upper division chemistry classes. **F. Hou**

2:25 667. Sprinkling short modules on current research and emerging topics throughout an undergraduate biochemistry course to engage student interest. **L.A. Rowe**

2:45 668. Biochemistry and citizen science: Cell phone colorimetry and detecting stress responses in milkweed. **B. Oatman**

3:05 Panel Discussion.

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 669. Molecular beauty: The chemistry in cosmetic products. A novel course for undergraduates highlighting the applicability of chemistry topics and principles in a ubiquitous product, namely cosmetics. **S. Thyagarajan**

4:10 670. Teaching in context: Analyzing food in the instrumental analysis laboratory. **D.A. Belle-Oudry**

4:30 671. From vine to bottle: Lessons learned working in a wine lab during the 2020 harvest in Oregon. **B.E. Taylor**

4:50 672. Engaging students in chemistry through literary metaphor. **K. Hoffman**

5:10 Closing Remarks.

WALC B066

Advances in e-Learning, Digital Learning, and Online Chemical Education

D. A. Canelas, Organizer, Presiding

11:00 Introductory Remarks.

11:05 673. Moving Whiteboarding Online: Attempting Interactive Learning in Online Discussion Boards. **B.E. Jenkins**

11:25 674. Use of an online social annotation platform to facilitate asynchronous, collaborative learning in a flipped organic chemistry course. A. Sigmon

11:45 675. Building Community in an Online Course. J. Selco

12:05 676. Student writing in massive open online chemistry classes. D.A. Canelas

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 677. Meeting the Need of Diverse Learners: New Technology that Remediates Math Skills & Chemistry Struggle Points with Spaced Practice. **J.B. Weinberg**

2:25 678. Implementation and analysis of a free-form intelligent tutoring system for general chemistry calculations. **E. King**, T. Holme, D. Yaron, S. Raysor, M. Benson, J. Sewall, K. Koedinger

2:45 679. How do students in a large general education Chemistry course use their personal technology for their academic work?. **T. Porter**, L. Zhu, R. Elliott

3:05 680. Why Students Withdraw from Online General Chemistry. E. Faulconer

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 681. Using Socrative Online Polls for Active Learning in the Remote or Hybrid Classroom. **A.M. Christianson**

4:10 682. Academic Help-Seeking in the (Post) COVID Era: Insights from the Past and Considerations for the Future. **D. Williams-Dobosz**, N. Bosch, C. Ray, M. Perry

4:30 683. Free multi-media learning objects that help students learn chemistry content. **J. Selco**

4:50 684. Breaking Barriers – Science Outreach Through Service Learning over Zoom. **D.L. Richter-Egger**, K. Rud, S. Nedungadi

5:10 Closing Remarks.

WALC 1132

In Memoriam: Celebrating the Life and Works of George M. Bodner

G. Bhattacharyya, A. C. Davis, Organizers, Presiding

11:00 Introductory Remarks.

11:05 685. The relevance of George Bodner's to the work of modern practitioners. **K.** Casey, S. Holladay

11:25 686. In the Beginning was Problem Solving, Spatial Ability and a Motorcycle. **J.R. Pribyl**

11:45 687. Let's make learning more challenging: The influence of desirable difficulties on general chemistry students' problem-solving performance. **O. Gulacar**, B. Vernoy, A. Wu

12:05 Audience Remembrance.

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 688. Lessons from George Bodner: "Framing" quality chemistry education research. **M. Orgill**

2:25 689. Theoretical Frameworks: How you Never Forget your "First Love". **D.I. Del Carlo**

2:45 690. Gadamer's Hermeneutics and Narrative Analysis: Complementary Theoretical Frameworks. **J.W. Shane**

3:05 Audience Remembrance.

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 691. Revisiting the problem-solving mindset. D.E. Gardner

4:10 692. Toward an educational theory of "Organic Chemistry as a Second Language.". **R. Ferguson**, D.P. Cartrette

4:30 693. What does research on electron pushing tell us about students' sensemaking and the continued viability of the mechanistic approach to teaching organic chemistry? **G. Bhattacharyya**

4:50 Audience Remembrance.

5:10 Closing Remarks.

STEW 313

Innovations in instruction in large-enrollment lecture courses

C. Reck, D. Snaddon, *Organizers* K. Arnold, *Organizer*, *Presiding*

11:00 Introductory Remarks.

11:05 694. Undergraduate Teaching Interns: Impacting Teaching and Learning Through Mentorship. **D. Snaddon**, K. Arnold

11:25 695. The impact of Supplemental Instruction on teaching students how to learn. C. Reck, K. Arnold

11:45 696. Comparing student performance and persistence in face-to-face and online live modalities of CLUE General Chemistry courses. **U. Swamy**, E. Kwong Lam, J. Carmel, S.M. Underwood

12:05 697. Headstart Classes for Early Intervention: A Strategy to Promote Retention in Large Introductory Chemistry Courses. **D. Snaddon**

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 698. An empirical investigation of the relationships among conceptions of teaching, instructional practices, and student outcomes. **Q. Cui**, S. Swarat, D. Drane, R. Baiduc, G.J. Light, S.M. Lo

2:25 699. The Effect of Flipped Learning and Multiple Assessment Opportunities on Achievement in a Large General Chemistry Course. **M.R. Porter**, J.K. Robinson, **E. McKenzie**

2:45 700. A New Approach to Characterizing General Chemistry Exam Questions Using Marzano's Taxonomy. **J. Finney**, R. Osman, G. Mittal, M. Avila, S.A. Toledo, C. Craig

3:05 701. PackPrep Collaboration: Unleashing Pack Mentality for Student Success in General Chemistry. **K. Proctor**

3:25 Closing Remarks.

- 3:30 Break.
- **3:45** Introductory Remarks.
- **3:50 702.** Using clickers for peer instruction in weekly discussion sessions of a large-enrollment course of organic chemistry. **D. Cruz-Ramirez de Arellano**
- **4:10 703.** Course Modifications to Increase Student Success in Organic Chemistry 2. **L.C. Brown**
- **4:30 704.** Data-informed Messaging: Guiding Student Engagement and Increasing Metacognition in Large Enrollment Courses. **A. Brummett**, J. Russell
- **4:50 705.** Are my students engaged? Nonverbal interactions as an indicator of engagement in a stadium-style lecture hall. **N.E. States**, C. Bruno, R.S. Cole
- **5:10** Closing Remarks.

STEW 202

Preparing students for success in organic chemistry

- J. M. Fautch, J. Houck, Organizers, Presiding
- 11:00 Introductory Remarks.
- **11:05 706.** OrgoPrep: improving student outcomes in organic chemistry through a peer-led remote intersession program. **B. Abrams**
- **11:25 707.** Personalized System of Instruction for the Foundational Knowledge of Organic Chemistry. **G.C. Tay**
- 11:45 708. Minimizing the shock of organic chemistry: using adaptive technology for organic prep. J.M. Fautch

- **12:05 709.** Development and Implementation of a 2-Week Course to Prepare Students for Organic Chemistry. **K. Stewart**
- 12:25 Closing Remarks.
- 12:30 Lunch.
- **2:00** Introductory Remarks.
- **2:05 710.** Using digital tools to engage students in prerequisite review for organic chemistry. **J. Houck**
- **2:25 711.** Participating in a high-structure general chemistry course found to increase student retention to organic chemistry. **J. Casey**, K. Supriya, S. Shaked, J. Caram, A. Courey
- **2:45 712.** Drawing Upon General Chemistry Concepts to Explain Mechanisms in Organic Chemistry. **C.T. Cox**, A. Witherspoon, M. Tripp, J. Laster
- **3:05 713.** Eliciting mechanistic reasoning underpinning syntheses with intentional prompt design. **A. Ellison**, B.J. Esselman, R. Stowe
- 3:25 Closing Remarks.
- **3:30** Break.
- 3:45 Introductory Remarks.
- **3:50 714.** How to design tutorial videos in organic chemistry and what do students truly learn from them?. **J. Eckhard**, M. Rodemer, S. Bernholt, N. Graulich
- **4:10 715.** "Small Bites" Selected general chemistry topic reviews relevant to organic chemistry. **G. Castillo Valdes**, **S.A. Dandekar**
- **4:30 716.** Prelecture Videos for Organic Chemistry Lecture. **R. Loy**
- **4:50 717.** Teaching in a Shared Curriculum: A Collaborative Process of Generating A Unified Organic Chemistry I Topics List. **S. Bridges**, A.M. Kiefer
- 5:10 Closing Remarks.

Assessment Instruments: Design, Development, and Evaluation

M. Atkinson, J. Barbera, Organizers, Presiding

2:00 Introductory Remarks.

2:05 718. Examining the Psychometric Properties of ROXCI: A Rasch approach. **G. Rushton**, Y. Jin, C. Rodriguez, L. Shah

2:25 719. The Development of Ordered Multiple-Choice Items for measuring Students' understanding of Light and Light Matter Interaction. **H. Alfulaiti**, M. Balabanoff, A.C. Moon

2:45 720. Measuring Understanding with the Reaction Coordinate Diagram Inventory (RCDI). **M. Atkinson**, S. Bretz

3:05 721. The Water Instrument: Assessment of Fundamental Concepts in General Chemistry. **M. Balabanoff**

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 722. Design and Evaluation of Assessment Instruments to Measure Students Knowledge of Green Chemistry Principles. **A. Leontyev**, K.D. Grieger

4:10 723. Utilizing Differential Item Functioning to Further Validate the Fundamental Concepts for Organic Reaction Mechanisms Inventory. **S. Nedungadi**, C.E. Brown

4:30 724. Establishing the validity and reliability of the organic chemistry representational competence assessment (ORCA). **L. Wright Ward**, F. Rotich, J. Hoang, J.R. Raker, M. Popova

4:50 Panel Discussion.

5:10 Closing Remarks.

STEW 307

Big 10 Gen Chem Labs: Advances, Innovations, and Challenges

E. G. Malina, Organizer, Presiding

2:00 Introductory Remarks.

2:05 725. Developing and implementing online laboratories: Leveraging sensemaking and writing evidence-based arguments. C.J. Harwood, C.E. Wright, J. Meyer, **M.H. Towns**

2:25 726. General chemistry labs during a pandemic: Hands-on laboratory work at home. **M.D. Driessen**

2:45 727. Returning to the labs after remote instruction; lessons learned in General Chemistry Labs at Penn State. **A.M. Bischof**, L. Funari, A. Herring

3:05 728. What COVID-19 "brought to the table" in our general chemistry laboratory curriculum. **B. Opoku-Agyeman**, A. Moore, T. Weaver, A. Welch, M. Nolan, T. Hanks

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 729. Why do we teach lab: How remote instruction motivated lasting change in General Chemistry lab assessments. **K.A. Gesmundo**, V.M. Berns

4:10 730. Implementing Introductory Project-Based Labs: Developments & Drawbacks. **B. Busby**, **J.L. Herman**

4:30 Panel Discussion.

5:10 Closing Remarks.

BRWN 1154

Evolution of the ACS Guidelines for Approved Programs & the Future of Chemical Education

M. Brooks, *Organizer* S. Reid, *Presiding*

2:00 Introductory Remarks.

2:05 731. Evolution of the ACS Guidelines for Approved Programs: 2022 Preview. **S.A. Reid**

2:25 732. Adopting the Diversity, Equity, Inclusion, and Respect (DEIR) Guidelines by Programs offering Bachelor's Degrees in Chemistry. M. Brooks, F.A. Fullilove-Cashwell, A.B. Mahoney, **E.A. Arriaga**

2:45 733. Exploring the Value of ACS Approval for Baccalaureate Programs. **C.E. MacBeth**

3:05 734. A Data "Snapshot" of ACS Approved Institutions. **M. Brooks**, F.A. Fullilove-Cashwell, N. Jenkins, S.A. Reid

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 735. Rethinking the Laboratory Requirements in the ACS Guidelines: Best measures for assessing the laboratory experience. **K. Frederick**, E.A. Arriaga

4:10 736. Hands-On Laboratories and ACS Public Policy Statements. **L.E. Pence**, L. Posey

4:30 737. Human and Animal Pharma Perspective on Required Lab Skills in Discovery and Development Labs. **B.M. Mathes**

4:50 738. Back into the Lab: Remediating Hands-on Lab Skills Taught in Critical Chemistry Courses. **F.A. Fullilove-Cashwell**, N. Jenkins, M. Brooks

5:10 Closing Remarks.

BRWN 3100

Reimagining Chemistry Education: Integrating Systems Thinking into Green & Sustainable Chemistry Education

N. J. O'Neil, *Organizer*G. Hurst, J. E. Wissinger, *Organizers, Presiding*

2:00 Introductory Remarks.

2:05 739. Investigating student reasoning in green and sustainable chemistry through the design-based research of decision memos. **S. Petritis**, H. Mcfall-Boegeman, M. Zhang, E.L. Day, M. Cooper

2:25 740. Development and implementation of an organic chemistry module on nucleophilic substitution reactions emphasizing solvent selection through a sustainability and systems thinking approach. **S.A. Cummings**, T. Fernando

2:45 741. Implementing systems thinking and the UNSDGs into the organic chemistry curriculum: Teaching NMR spectroscopy and MS spectrometry as powerful tools to Introduce students to global issues. **K.M. Halligan**, I. Larraza

3:05 742. Choose your own green chemistry synthesis adventure: A general chemistry laboratory experience. **A. Thomas**, C.R. Pulliam, E.E. Liu

- **3:25** Closing Remarks.
- **3:30** Break.
- 3:45 Introductory Remarks.
- **3:50 743.** Preparing the next generation of scientists for sustainable action. **N.K. Obhi**, N.J. O'Neil, A.S. Cannon
- **4:10 744.** Life imitates art: Encouraging systems thinking in chemistry through a curriculum inspired by Wagnerian opera. **D.A. Laviska**
- 4:30 Panel Discussion.
- 5:10 Closing Remarks.

BRWN 3102

The affective domain in chemistry education: Impact of affective and cognitive factors on student learning and pedagogical practices.

S. Srinivasan, S. Villafane-Garcia, *Organizers* M. Anzovino, *Presiding*

- 2:00 Introductory Remarks.
- **2:05 745.** Student Goals and the Contexts of a Flipped-Learning General Chemistry II Course. **E. Roth**, C. Randles, R. Tasker
- 2:25 746. GPS guidance for building community and motivating students. L. Starkey
- 2:45 747. Withdrawn
- **3:05** Panel Discussion.
- **3:25** Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 748. Relationship between Course-Level Social Belonging (Sense of Belonging and Belonging Uncertainty) and Academic Performance in General Chemistry 1. **J. Edwards**, R. Barthelemy, R. Frey

4:10 749. Learning outside the textbook: Pedagogical practices that impact the affective domain in general chemistry classes. **L.D. Montes**, **C.B. Frech**

4:30 750. Collaborative Research: Assessing effects of behavioral and affective factors on community college students' success in an introductory biology course. **H.L. Torres**, R. Frey, M. Hardy

4:50 Panel Discussion.

5:10 Closing Remarks.

BRWN 3104

Think, Plan, Teach: Enacted Pedagogical Content Knowledge in Higher Education

E. L. Atieh, L. Shi, Organizers, Presiding

2:00 Introductory Remarks.

2:05 751. Think, plan, act: Mediating factors of university instructors' enacted pedagogical content knowledge. **E.L. Atieh**, L. Shi, A. Pellegrini, R. Erdmann, M.N. Stains

2:25 752. Why we do what we do: Factors that influence STEM faculty members' instructional decisions. **R. Sansom**

- **2:45 753.** Pedagogical Chemistry Sensemaking: A conceptual framework to promote pedagogical sensemaking in model-based lesson planning. **M.M. Wu**, E.J. Yezierski
- 3:05 Panel Discussion.
- **3:25** Closing Remarks.
- **3:30** Break.
- **3:45** Introductory Remarks.
- **3:50 754.** Exploring Instructors' Conceptions about Assessment and Reasoning behind their Choices of Assessment. L. Shi, J. Mitchell-Jones, M.N. Stains
- **4:10 755.** Case study characterizing organic chemistry instructors' Pedagogical Content Knowledge around teaching with representations. **T. Jones**, J.M. Pratt, M. Popova
- **4:30 756.** Impact of Covid-19 Pandemic on Introductory STEM Instructors ePCK. **S.B. Boesdorfer**
- 4:50 Panel Discussion.
- **5:10** Closing Remarks.

WALC 3090

Chemistry education research: Undergraduate student research symposium

- J. Donnelly, N. Lapeyrouse, Organizers, Presiding
- **3:45** Introductory Remarks.
- **3:50 757.** Key Experiences and Best Practices for Emergency Remote Learning. **B.** Chiu, N. Lapeyrouse

4:10 758. Analyzing gender representation and stereotypes in college general chemistry textbooks. **C. Lopez-Castilla**, M. Brackett, B. Chiu, N. Lapeyrouse

4:30 759. Integrating the teaching of biomimicry through Nanoeducation and its impact on attitudes and argumentation among high school students - the case of gecko behavior and nano liposomes as drug carriers. **M. Hugerat**, S. Elgamal, S. Asli

4:50 760. Applications of the MAtCH Model to Analyze Student Problem-Solving. **B.** Chiu, C. Randles, S.M. Irby

5:10 Concluding Remarks.

PMU North Ballroom

General Posters 4

M. T. van Opstal, Organizer, Presiding

5:30 - 6:30

761. Development of a microwave-assisted synthesis of salen H2 and Co(salen) undergraduate experiment. **S.A. Henrie**, J.H. Davis, B. Johnson

762. Teaching Chemistry Using the of the Apollo 11 Lunar Landing from Popular Media. **J.G. Goll**, E. Romanin

763. Investigating the Effects of Instructor Facilitation on Student Engagement in a POGIL Based General Chemistry Class. **K. Abouelyamin**, G. Rushton, J. Reid, S. Fateh

764. Investigations Into Aryne Reactivity through Summer and Course-Based Undergraduate Research. **J.K. Kisunzu**

765. Analysis of the elements of journalism and constructively responsive reading in promoting reading comprehension and analytical writing when learning industrial and environmental chemistry. **S.R. Esjornson**

- **766.** Elucidating Goals for Institutional Change Initiatives in STEM from NSF Annual Reports. **S. Feola**, B. Couch, B. Whitt, B. Earl, A. Lane, J. McAlpin, L. Prevost, S.E. Shadle, J. Skvoretz, M.N. Stains, J. Ziker, J.E. Lewis
- **767.** Breaking the language barrier in chemistry assessment: Project plan and outcomes. **A.E. Kim**, E. Lee
- **768.** Fun and Games with InteractiveChemistry.org. **S.G. Sogo**
- **769.** Assessment of Student Understanding of Organic Chemistry through Creative Exercises. **A.R. Green**, Y.K. Gorske, C.F. Bauer
- **770.** Gamifying inorganic chemistry in a small college (and virtual) classroom setting. **J. Wolfgram**, B. Wile
- 771. Pandemic silver linings: Online lab materials development and subsequent use to improve face-to-face general chemistry labs. **D. Fisher**, J.M. Denton, M.D. Fritz
- 772. ACS Project SEED During the Pandemic: Improvements and Learning Outcomes in Providing Professional Development and College Readiness to Promising High School Students. E. Speidell, C. Kuniyoshi, N. Bakowski
- **773.** Developing Writing Techniques in a First-Year General Chemistry Laboratory. **G. Pealer.** C. Johnson
- 774. Extraction and Isolation of Sulfur Phases in Meteorite Simulants. R.W. Hilts
- 775. Creative exercises in organic chemistry: Analysis of student responses and perceptions. **K.D. Grieger**, A.A. Lam, A. Leontyev
- **776.** Ten minutes a semester: Evaluation of a short wellness intervention for undergraduate chemistry and biology courses. **M.K. Meadows**, **K. Strickland**, A.N. Chaffin, K.D. Kloepper, L. Simon, J.P. Stanga
- **777.** A Socially-Collaborative Model-Based Symmetry Activity for Inorganic Chemistry. **J.J. Markut**, D.J. Wink
- 778. The Exploration of Integrating a Community Service Learning Water Project into a Postsecondary Analytical Chemistry II Lab. K. Ho, S. Smith, C. Venter
- **779.** Research Module for Undergraduate Organic Chemistry Students. **T. Sucheck**, G. Gordon, M. Grandsko, J. Hussein, J. Rawski, A. Schwab

- **780.** Addressing learning gaps in acid-base chemistry using novel three-dimensional models. **G. Grimes**, A. Blecking, M. Hoelzer
- **781.** Examining the Impact of an Online Pre-Course and Values Affirmation Activity in a First-Semester Organic Chemistry Course on Course Outcomes. **T.L. Vickrey**, G. Grinde
- **782.** How do you see carbs? Undergraduate Students' Interpretation of Carbohydrate Projections. **J. Garcia**, M.H. Towns
- **783.** Assessing Learning in the Laboratory for a General Chemistry Course-Based Undergraduate Research Experience. A. Potts, K.A. Grice, **T.A. French**
- **784.** Aggies Versus The Pandemic. **A. Altemose**, E. Lee, A.C. Songok
- **785.** Design for Online Collaborations Beyond the Pandemic. **L.A. Morsch**, B. McCollum, M.T. Wentzel
- **786.** DIY in General Chemistry Lab. **K.E. Anderson**, S.R. Livingston
- **787.** The Internet of Chemistry Things (IoCT). **L. Poirot**, E. Lisitsyna, H. Tiner, E. Bouzid, E.C. Bucholtz, R.E. Belford
- **788.** Reformed Experimental Activities (REActivities): Assessing student engagement in an undergrauate organic chemistry lab.. **T. Goudreau Collison**, J.A. Cody, D. Newman, J.P. Anderson, B.L. Edelbach
- **789.** Forensic analysis of go kart racing tire preparation solutions. I. Johnson, **L.H. Mielke**
- **790.** Strategies for Encouraging More Chemistry and Biochemistry Students to Take Math Beyond the Two Semesters of Calculus Required. **B. Findley**, M.J. Andrea, D.R. Wawruck, G. Ashline
- **791.** Evolution of the Organic Laboratory Program at Hope College as a Result of the COVID-19 Pandemic. **T. Smith**
- **792.** The Effect of Growth Mindset Intervention on Students' Perceptions of Self Efficacy in a first-year general education science course. **J. Kavalakatt**, **N. Tran**, J. Park, T. Nguyen, J. Chan

793. Synthesis of difluoromethyl esters from carboxylic acids: Introduction of fluorine chemistry and 19F NMR in undergraduate organic chemistry labs. **C. Barrett**, R. Broyer

WEDNESDAY

WALC 1055

Assessment and Measurement in Research and practice

K. L. Murphy, J. R. Raker, Organizers, Presiding

8:00 Introductory Remarks.

8:05 823. Capturing evidence of inclusive teaching in undergraduate STEM classrooms through an inclusive teaching observation protocol (ITOP). **J.M. Mutambuki**, C. Muteti

8:25 824. Walk-by observational protocol for institution-wide assessment of active learning. **C.F. Bauer**

8:45 825. Factors that impact the difficulty of organic chemistry exam items: Item order and item environment effects. **O. Michels**, T.C. Pentecost, S. Nedungadi, J.R. Raker, K.L. Murphy

9:05 826. Applying and adapting a cognitive complexity rubric to physical chemistry exam items. **M.S. Reeves**, T.C. Pentecost, J.R. Raker, K.L. Murphy

9:25 Closing Remarks.

Chemistry Education Research: Graduate Student Research Symposium

M. Connor, O. Crandell, *Organizers, Presiding*C. G. Carlson, E. L. Day, M. Herridge, S. Houchlei, Y. Liu, M. Popova, T. Qu, P. Vincent-Ruz, L. Wright Ward, *Presiding*

8:00 Introductory Remarks.

8:05 841. Second-semester general chemistry undergraduate students ideas about polarity when viewing multiple molecular representations. **C. Chatha**, S. Bretz

8:25 842. Exploring modifications to scale-themed instruction in general chemistry II: Determining content area and scale concepts targets for increased scaffolding. **A.R. Tomczyk**, K.L. Murphy

8:45 843. Mapping Students' Chemical Thinking During Collaborative In-Class Tasks. **M. Macrie-Shuck**, V. Talanquer

9:05 844. Analysis of factors that influence success in introductory general chemistry: Relationship between factors and student's study habits in general chemistry. **L. Laguerre Van Sickle**, R. Frey, J. Edwards

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 845. Exploring Students' Understanding of Electrophilic Aromatic Substitution Reactions. **S. Kariyawasam Gamage**, S. Mooring

11:25 846. Does a scaffold fit all? - Exploring students' engagement with a scaffolded task in relation to their prior knowledge. **D. Kranz**, M. Schween, N. Graulich

11:45 847. Does online learning impact students' ability to draw mechanisms?. **V. Scammahorn**, M. Cooper, S. Houchlei

12:05 848. Supporting students to construct causal mechanistic explanations in the context of complex phenomena such as impact of solvents on rate of organic reactions. **K. Seth**, E.L. Day, S. Houchlei, M. Cooper

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 849. Undergraduate chemistry and biology student engagement in causal mechanistic reasoning about protein-ligand binding. **C.G. Carlson**, K. Noyes, J.R. Stoltzfus, T.M. Long, C.V. Schwarz, M. Cooper

2:25 850. Metabolism Instruction: Students' REDOX knowledge transfer and attitude towards metabolism. **T. Jones**

2:45 851. Effects of a simulation-based activity on student reasoning about absorption. **Y. ZHANG**, N. Spitha, P. Doolittle, A.R. Buchberger, S. Pazicni

3:05 852. Investigating the Landscape of the Biochemistry Course across the United States. **K. Nix**, S.M. Underwood

3:25 Closing Remarks.

WALC 3121

Communicating chemistry: Improving oral and written communication skills to foster academic and career success

J. Thompson, B. Widanski, Organizers, Presiding

8:00 Introductory Remarks.

8:05 853. Posters as a Pedagogical Device to Foster Oral Chemical Literacy. **B. Widanski**, J. Thompson

8:25 854. Effects of video assignments on communication and community in an undergraduate chemistry course. **S. Post**, C. Schrank, K.J. McKnelly

8:45 855. Successes, challenges, and next steps of integrating communication skills taught from a stand-alone Chemical Communications course into subsequent courses. **J.W. Karr**, J.L. ODonnell

9:05 856. Fitting students for the world in which they will live: Development of a curriculum spanning seminar series. **D.K. Hoover**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 857. Comparing delivery modalities of College to Career and Research course. G.B. Ray

11:25 858. Designing writing assignments for cognitive skill development. J.B. Easter

11:45 859. Annotated Writing Exemplars for Organic Chemistry Laboratory Reports. **A.P. Dicks**, C. Phillips, J. Bayne, D. Stone, A. Williams

12:05 860. Withdrawn

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 861. Science and speculation: A writing-intensive, first-year seminar. **S.S. Tartakoff**, A.D. Hill

2:25 862. Implementing K-12 Educational Tools in a Capstone (Senior Seminar) Biochemistry and Chemistry Classroom. **C. Chant**

2:45 863. Use of oral and written communication in general and organic chemistry courses.. **B. Miller**

3:05 864. Immersion in the Chemical Biology Literature and Scientific Communication through Case Studies. **B. Blacklock**

3:25 Closing Remarks.

STEW 306

Engaging students in Analytical Chemistry - Curriculum and Cognition

S. Oxley, Organizer, Presiding

L. Mier, A. M. Palmer, J. K. Robinson, Presiding

8:00 Introductory Remarks.

8:05 885. Chromatography Simulators for Teaching Analytical Separations. **C.A. Lucy**

8:25 886. A POGIL-Based Quantitative Analysis Laboratory Curriculum Utilizing Python via Google Colab. **L. Mier**

8:45 887. The idea generator: New topics in active learning laboratories generated through the investigative laboratory writing assignment. **L.H. Mielke**

9:05 888. Flipping the Analytical Classroom: Lessons from COVID. M.B. Jensen

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 889. Science meets soft skills: Active learning in the quantitative analysis laboratory. **S.M. Strickland**

11:25 890. Kinetics analysis of the isomerization of alpha and beta acids found in hopped beer. P. Doolittle

11:45 891. Incorporating Experimental Design into a Bioanalytical Chemistry Laboratory Course. **J.K. Robinson**

12:05 Panel Discussion.

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 892. Applications first: Using primary literature and case studies to promote critical thinking and scientific writing in instrumental analysis courses. **S.E. Gray**

2:25 893. Reflective Writing and Process-Oriented Goals in the Analytical Chemistry Curriculum. **D.L. Donohoue**

2:45 894. Teaching industry ready skills in an Instrumental Methods course via independent student projects. **J.L. Hawk**

3:05 895. Analytical Chemistry Students' Conceptions of Monoprotic Acid-Base Titration. **D.N. Maxwell**, E.A. Teich, S.A. Finkenstaedt-Quinn

3:25 Closing Remarks.

WALC 3138

Science Communication in Classrooms and in the Public (#SciComm)

S. Drury, L. Wysocki, Organizers, Presiding

S. A. Ryan, Presiding

8:00 Introductory Remarks.

8:05 954. Deliberation in the chemistry classroom: Developing science communication around socio-scientific issues. **L. Wysocki**, S. Drury

8:25 955. Models of Deliberative Pedagogy in Chemistry Courses. **S. Drury**, L. Wysocki

8:45 956. Preparing to Facilitate Deliberation. A.M. Nienow, P. Conners

9:05 957. White Sands, Smeltertown, and Systems Thinking: a Situative Approach to Implementing Place-Based Education Design Principles in Core-Idea Centered General Chemistry. **E.L. Day**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 958. Undergraduate Course on Science Communication to the Public. **J.** Sridhar

11:25 959. The Development of Pedagogical Methods for Training Undergraduates in Skills of Science Communication to the Public. **F.L. Payton Stewart**, J. Sridhar

11:45 960. Scientific storytelling: A general education course to teach science communication, writing instruction, and narrative building. K.Y. Neiles

12:05 961. Turning My Kitchen Into a Classroom. J. Lee

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 962. Using Popular Social Media Platforms to Empower Parents in their STEM abilities. **S.A. Ryan**

2:25 963. Five lines and 280 characters: Using Twitter to share chemistry concepts via limericks and other light verse. **C.J. Hayes**

2:45 964. Solar System Map. B. Salles

3:05 965. Making chemistry relevant to everyday life using the podcast Chemistry For Your Life. **M. Collini**

3:25 Closing Remarks.

WALC 3127

Writing to Promote Learning and Disciplinary Thinking in Chemistry

S. A. Finkenstaedt-Quinn, *Organizer, Presiding* F. M. Watts, *Presiding*

8:00 Introductory Remarks.

8:05 997. Integrating a Conceptual Writing Assignment in General Chemistry I. **P. Muisener**

8:25 998. Inquiry-Driven Proposal Writing in Carbohydrate (Bio)Chemistry. **A.L. Pirinelli**

8:45 999. Introduction of Scaffold Writing Across the Chemistry Department. **S.L. Skiles-Jones**, E.S. Eitrheim, C.B. Frech, L.D. Montes, D.G. New, A.L. Waters

9:05 Panel Discussion.

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 1000. Characterizing Student Interactions During Peer Review and Revision. **S.A. Finkenstaedt-Quinn**, F.M. Watts, G.V. Szymczak Shultz

11:25 1001. How a Writing-to-Learn Assignment's Design Shapes Second-Semester Organic Chemistry Students' Elaborations on Reaction Mechanisms. **I. Zaimi**, A. Dood, G.V. Szymczak Shultz

11:45 1002. Research into Practice: Scaffolded and Discussion-based Case Comparison Activity in Organic Chemistry. **D. Haas**, F.M. Watts, A.J. Dood, G.V. Szymczak Shultz

12:05 1003. Helping students synthesize chemistry with context through soundboarding. **A. Lolinco**, T. Holme

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 1004. A machine learning approach to exploring students' writing about reaction mechanisms. **A.J. Dood**, F.M. Watts, G.V. Szymczak Shultz

2:25 1005. Developing a tool for automated, formative feedback on an organic chemistry writing-to-learn assignment. **F.M. Watts**, A. Dood, G.V. Szymczak Shultz

2:45 1006. Development of a machine learning model to predict levels of electrophile understanding. **S.J. Frost**, B.J. Yik, D. Cruz-Ramirez de Arellano, K.B. Fields, F. Costanza, J.R. Raker

3:05 Panel Discussion.

3:25 Closing Remarks.

WALC 1132

Active learning implementation

D. B. King, Organizer, Presiding

8:00 Introductory Remarks.

8:05 794. Use of real-world applications to improve in-class activities. D.B. King

8:25 795. A forensics capstone for general chemistry: enriching the lab experience and evaluating students' scientific skills. **A.A. Lam**, S. Eveland-Parrott

8:45 796. Implementation of three-dimensional learning into the General Chemistry classroom. **J.P. Darr**, J.A. Conrad, D.L. Richter-Egger

9:05 797. Case Study Classes: Incorporating NGSS into active-learning assignments in a large enrollment university general chemistry course. **L. Munro**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 798. Creating Digital Interactive Card Sorts. A. Green

11:25 799. Effects of supplemental content-rich songs and crossword puzzles on secondary school students' performance, retention and interest in chemistry in Ondo State, Nigeria.. E.O. Ayeni

11:45 800. Remote Learning and Laboratory Practices for AP® Chemistry. **L. Acampora**

12:05 801. Ohio University STEMStart: A Jump Start for First Year Science Majors. **C. Beck**

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 802. Tossing the Textbook. E.L. Bailey

2:25 803. Engagement in the Classroom and Student Learning. L. Aronne

2:45 804. Active learning to enhance student outcomes in General Chemistry. **D. Bassolino**, L.A. Ekanger, R.A. Hunter, J. Baker, B. Chan

3:05 805. Team-based learning large and small: Implementation across class sizes. **T. Legron-Rodriguez**, **J. Donnelly**

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 806. Using LEGO® brick activities to increase active learning in the biochemistry classroom. **S. Austin**, S. Christmas, C. Millar

4:10 807. Throwing Away Paper Wads: An Active Learning Activity in Chemical Kinetics, Reaction Orders, and Mechanisms. **J.A. Orvis**

4:30 808. Escape room! Digital activity using Google Forms. T. Eaton

4:50 809. Static and interactive concept maps for general chemistry learning. **K. Nishida**, R.M. Wong, O.O. Adesope

5:10 Closing Remarks.

WALC B066

Advances in e-Learning, Digital Learning, and Online Chemical Education

D. A. Canelas, Organizer, Presiding

8:00 Introductory Remarks.

8:05 810. Immersive Digital Learning in STEM Laboratory Courses. **E.M. Rezler**, **O. Yavuz-Petrowski**, A.C. Perkins, J. Krill, J. Golden Botti

8:25 811. Lab kit vs. Virtual Labs: An Investigation into Lab Delivery Methods for Online Students in Service Courses. **B.E. Jenkins**

8:45 812. Labflow & Visual Data: Student attitudes and experience working online with visual data. **A.M. Dark**

9:05 813. Integrating chatbots into the chemistry classroom. A. Lolinco, T. Holme

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 9999. The Unlimited and Innovative World of OER: An Interdisciplinary Approach to Successful Chemistry Laboratory Manual Development. **A.C. Perkins**, O. Yavuz-Petrowski, E.M. Rezler, J. Golden Botti, J. Krill

11:25 815. Effects of an Online Climate Change Project on Preservice Science Teachers' Knowledge, Hope, and Self-Efficacy Toward Climate Change. **Y. Liu**, Y. Song, X. Wang

11:45 816. Google forms, iPads, and retrieval practice: Small changes in the classroom for effective teaching. J.B. Eberle

12:05 Panel Discussion.

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 817. What I'm learning about myself: Student meta-reflections in organic chemistry. **L.A. Morsch**, B. McCollum, M.T. Wentzel

2:25 818. A Highly Compressed Organic Chemistry Laboratory Course for Online Degree Students. **S.T. Pillai**, A. Austin, M. Zhu, I.R. Gould

2:45 819. Lessons learned from design and implementation of a year-long online organic chemistry class. **S.M. King**

3:05 Panel Discussion.

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 820. Experiences in developing online OER Preparatory Chemistry content during the pandemic and its applications to post pandemic hybrid learning. **E. Lisitsyna**, L. Poirot, R.E. Belford

4:10 821. The Fully Online BS and BA Degrees in Chemistry and Biochemistry at Arizona State University. **S.T. Pillai**, A. Austin, I.R. Gould, M. Zhu

4:30 822. The evolution of online chemistry education. **D.A. Canelas**

4:50 Panel Discussion.

5:10 Closing Remarks.

WALC 3122

Chemical Education Xchange: Engaging with Contributors

J. L. Holmes, Organizer, Presiding

8:00 Introductory Remarks.

8:05 827. An Invitation to Share Content with the ChemEd X Community. **D. Cullen**

8:25 828. The Wonderful Chemistry of Crayola's "Color Wonder" Markers. **T.S. Kuntzleman**, D.J. Campbell

8:45 829. Using Scientific Evidence and Real World Phenomena to Drive Instruction. **K. Drury**

9:05 830. Chemical Philately: A Perforated Picture of Chemistry. M.A. Morgan

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 831. Strategies for Helping Students to Avoid Common Errors and Improve Their Understanding. **M. Farabaugh**

11:25 832. Getting Ahead of Common Misconceptions with Intentional Lesson Design. **N. Walsh**

11:45 833. I "Lava" Particulate Models. M. Hemling

12:05 834. Standards based grading: changing the culture of the high school chemistry classroom. **C. Husting**

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 835. ChemEd X: An Introduction to Chemical Education Xchange. J.L. Holmes

2:25 836. Teaching General Chemistry from an Applications Approach. **S.J. Donnelly**

2:45 837. ChemEd X is the activity platform we needed. D.J. Campbell

3:05 838. Exchanging Ideas with Chemistry Educators: Chemical Education Xchange. **M.J. Harvey**

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 839. Open Science and Open Pedagogy: My Journey as a TYC Lead Blogger at ChemEdX. **C. Sorensen-Unruh**

4:10 840. Asynchronous Online Chemistry Promotes Equity and Inclusion. **K.E.** Carrigan

4:30 Panel Discussion.

5:10 Closing Remarks.

Course-Based Undergraduate Research Experiences (CUREs) in the chemistry and biochemistry teaching laboratory

A. Goodman, M. Pikaart, Organizers, Presiding

8:00 Introductory Remarks.

8:05 865. Researching slime in organic chemistry lab: A CURE project. **A.P. Johanson**

8:25 866. An Organic Chemistry CURE in a Laboratory Course for Chemistry and Biochemistry Majors. **S.C. Otte**

8:45 867. A library project for a first-year chemistry Course-embedded Undergraduate Research Experience (CURE) at Georgia Gwinnett College (GGC). **A. Button**, C.L. Anfuso, I.H. Krouse, B.C. Shepler

9:05 868. Catalyzing new research opportunities at a primarily undergraduate institution using a CURE in analytical chemistry. **E.D. Niemeyer**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 869. Microplastics and the Cahaba River: Introducing students to environmental chemistry through curriculum-based research. J. Forakis, J. March

11:25 870. Applying Metagenomics to Undergraduate Research: A Bacterial Profile of Soil Samples from the Potomac River Basin. **A. Taraboletti**

11:45 871. Lessons Learned from the Design and Implementation of an Analytical Chemistry CURE Investigating Indoor Films. **A.L. Van Wyk**, L. Andrews, A. Julius, B. Shrestha, S.K. Shaw

12:05 Panel Discussion.

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 872. An Authentic Research and Online Publication Experience in the Undergraduate Biochemistry Lab: Student and Instructor Perspectives. **B. Hall**

2:25 873. Lowering the activation energy: introducing a CURE in multiple small steps at a small, primarily undergraduate liberal arts college. **A.A. Carter**, P.A. Craig

2:45 874. Design, synthesis and analysis of small molecule inhibitors of quorum sensing in Vibrio bacteria: a year-long course-based undergraduate research experience (CURE) for first- and second-year students. **L.C. Brown**

3:05 875. A win-win collaborative interdisciplinary Course-based Undergraduate Research Experiences (ci-CUREs) program for undergraduates: Training undergraduate students to effectively navigate across traditional discipline boundaries. **G. Rabah**, S. Franzen

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 876. Course-based Undergraduate Research in a Small Liberal Arts Undergraduate Institution. **X. Song**

4:10 877. Teaching the Nature of Science to Nonmajors Through a Course-based Undergraduate Research Experience. **M.J. Harvey**

4:30 878. A look at moving to University designated CURE courses within the Chemistry and Biochemistry Department at Weber State University. **T.M. Covey**

4:50 879. Investigation of Research and Time Commitment Aspect of CUREs Beyond the CURE. **A. Ayella**

5:10 Closing Remarks.

WALC 2007

Exploring strategies for decreasing DFW rates in General & Organic Chemistry

E. S. Eitrheim, A. L. Waters, Organizers, Presiding

8:00 Introductory Remarks.

8:05 896. Analyzing Factors for First Semester General Chemistry Student Success at the University of Central Oklahoma. **A.L. Waters**, **E.S. Eitrheim**, T. Cook

8:25 897. Strategies to move the needle for at-risk students and lower the DFW rate in general chemistry. **B. Augustine**, H.B. Miller, T. Knippenberg

8:45 898. One-semester general chemistry increases completion rate compared to two semesters. **W. Kennerly**, K. Sheppard, K. Frederick

9:05 899. Impacting Student Success in General Chemistry I: Using a Co-Requisite Support Course. **R.J. Weber**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 900. Bridging the Gap for Students Transitioning Between General Chemistry and Organic Chemistry. **M.K. Maron**

11:25 901. Oral Exams in General and Organic Chemistry as a Method of Student Support and Equity. **A.J. Kabrhel**, J.E. Kabrhel

11:45 902. Two decades of improving the DFW rate in organic chemistry at Elon University: Organizing by mechanism, flipping the classroom, adopting an online homework system, and facilitating a growth mindset. **J.M. Karty**

12:05 903. Mathematical Practices in Chemistry: a supplemental course to support mathematics preparation for general chemistry. **A.M. Fleshman**, D.L. Donohoue, R.M. Doughty

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 904. A Mid-Semester Alternative for At-Risk Students in Introductory Chemistry. **J. Morris**

2:25 905. Implementation of a Remedial General Chemistry I Intersession Course on Preparing Students for General Chemistry II. **M. Jaffe**

2:45 906. Ramp To Success: Perspectives and lessons learned in building and implementing a student recovery course. **B.M. Neal**, A. Cutler, D.J. Styers-Barnett

3:05 907. Incorporating Study Hall into the General Chemistry Program at Tennessee Tech University. **A.J. Carroll**, E. Alonge, L. Kocher, C. Rezsnyak, K. Rust

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 908. Reading in chemistry: How students can succeed. **L.E. Johnson**, B.A. Lucius, T. Habeck, F. Diawara, A. Blecking

4:10 909. Determining the effect of spaced retrieval practice in introductory chemistry courses. **L. Hoyt**

4:30 910. Improving student learning and course appreciation in General and Organic Chemistry. **J.P. Lanorio**

4:50 Panel Discussion.

5:10 Closing Remarks.

STEW 310

Incorporating diversity, equity, inclusion, and respect (DEIR) learning opportunities in the chemistry classroom

A. Nakamura, K. R. Ries, Organizers, Presiding

8:00 Introductory Remarks.

8:05 919. Effects of teaching the United Nation's Sustainable Development Goals in undergraduate chemistry classroom. **A. Nakamura**

8:25 920. Exploring impacts of influences upon students' mindsets and personality characteristics. **D.J. Nelson**

8:45 921. Integrating antiracism, social justice, and equity themes throughout an undergraduate biochemistry course. **J.M. Liu**, C. Hollond, R. Sung, S. Hollar

9:05 Panel Discussion.

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 922. Sarah Reisman, titan of organic synthesis: inculcating the contribution of female scientists in sophomore organic chemistry. S. Chamberland

11:25 923. Diversity and Inclusion in Science Teaching and Learning (DISTL): Focusing on the perspectives of undergraduate chemistry Students and Graduate Teaching Assistants. **A. Aidoo**, **T. Gupta**

11:45 924. Navigating a Homogenous History: Belonging and Empowerment in Undergraduate Chemistry. **S.N. Knezz**

12:05 925. Role of International Research Experiences in the Development of Women of Color in Chemistry. **R. Davis**, **Z.S. Wilson-Kennedy**, L. Winfield, D. Spivak

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 926. Conversations About Bringing Racial and Social Justice into a General Chemistry Classroom at an Open-Access Metropolitan Commuter Community College. **A. Glass**, K. Wittman Howell

2:25 927. Decolonizing Chemistry: Rethinking the Language of Chemistry. **P. Gittins**, R.M. Hanson

2:45 928. Challenges of Inclusivity and Diversity. E.A. Nalley

3:05 Panel Discussion.

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 929. Teaching chemistry through a DEIR lens. E.A. Arriaga

4:10 930. Withdrawn

4:30 931. Chemical education: Intergroup dialogue as an approach for creating inclusive classrooms. **D.J. Wink**, M. Ryu, M. Stieff, G.A. Papadantonakis, E. O'Leary

4:50 Panel Discussion.

5:10 Closing Remarks.

Research in Chemistry Education

M. Anzovino, J. H. Carmel, Organizers, Presiding

8:00 Introductory Remarks.

8:05 938. Impact of simulation order on general chemistry students' cognitive engagement while completing a dissolving simulation activity. **K.J. Linenberger Cortes**, K. Barbee, A. Randolph, C. Terrell

8:25 939. A Socio-cognitive Approach to Qualitatively Investigate Student Understanding of Chemical Equilibrium using a Concurrent Think-aloud Interview Protocol. **H.S. van den Bogaard**, E.L. Day

8:45 940. First-year students' epistemologies on the structure of chemistry knowledge linked to problem solving strategies: A think aloud study. **A. Lekhi**, S. Nashon, M. Milner-Bolotin

9:05 941. Understanding Discourse Patterns in a Small Discussion Course. **H.T. Nennig**, R.S. Cole

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 942. How academic self-efficacy and metacognitive learning strategies affect the academic performance of college students in chemistry. O. Fayeun, O.O. Babajide

11:25 943. Development of semi-structured student interviews for insight into student problem-solving in key general chemistry II content areas. **A.R. Tomczyk**, K.L. Murphy

11:45 944. Scientific Practices in Lab Curricula: Examining the Evidence. **N.S. Stephenson**, P.C. Facey, N.P. Sadler-McKnight

12:05 945. Modeling Abstraction in Physical Chemistry Instruction. **J. Karch**, H. Sevian

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 946. Investigation into the paths students engage in to predict molecular shape and how molecular representations relate to such paths. **A. Farheen**, S.E. Lewis

2:25 947. Efficiently visualizing implicit hydrogens with the prime method. **D.L. Silverio**, M.J. Mistretta, S.P. Buzzolani, A. Sam, A. Bugajczyk, S. Elezi

2:45 948. The Role of Chemical Representations in General Chemistry Textbooks on Students' Learning. **B. DEMIRDOGEN**, G. DEMIRCAN AKMAN

3:05 949. What does it mean to capture and characterize representational competence? An analysis of how students reason about representations of molecular structure. **M. Popova**, L. Wright Ward, F. Rotich, J. Hoang

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 950. Applications of computer-based scoring for the teaching and learning of reaction mechanisms in organic chemistry. **B.J. Yik**, S.J. Frost, D. Cruz-Ramirez de Arellano, K.B. Fields, F. Costanza, J.R. Raker

4:10 951. Impact of Assessment Emphasis on Organic Chemistry Students' Explanations for an Alkene Addition Reaction. **N. Ellias**, K. DeGlopper, C. Schwarz, R. Stowe

4:30 952. Organic Chemistry Gamified: Students' Perceptions and Learning. **S. von Gillern**, J. Li, L. Fang, J. Pennington, W. Schneller

4:50 953. Influence of spatial aptitude on student success in organic stereochemistry. **E.N. Kadnikova**

5:10 Closing Remarks.

WALC 3090

Teaching Programming in the Chemistry Curriculum: Approaches, Challenges, and Best Practices

J. A. Nash, *Organizer*A. Ringer McDonald, *Presiding*

8:00 Introductory Remarks.

8:05 966. Integrating Interactive Python Coding Exercises Across Physical and General Chemistry Courses. **G.Y. Stokes**, S. Neshyba, P.M. Rowe, T. Guasco, A.L. Mifflin, W.C. Pfalzgraff, S.W. Suljak, E. Gillette

8:25 967. Integrating Interactive Python Exercises into General Chemistry Labs. G.Y. Stokes, **H. Mirafzal**, M.E. Tichy, K. Wheeler

8:45 968. Introducing chemistry students to programming concepts using MATLAB Live Scripts. **K.D. Closser**

9:05 969. Teaching chemistry majors to code in physical chemistry lab. **M.N. van Staveren**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 970. Accelerating Chemical Discovery: Teaching Undergraduate Chemistry Through the Lens of Data Science. **B. Rubenstein**, J. Ho, S. Anisetti, M. Trouilloud, D. Lu

11:25 971. Project-based learning in an Internet of Chemistry Things special topics class. **E. Lisitsyna**, L. Poirot, H. Tiner, E. Bouzid, P. Williams, R.E. Belford

11:45 972. Incorporating Programming as a Transferable Skill and Tool for Active Learning in a Graduate Physical Chemistry Elective Course on Molecular Modeling. **S.E. Mason**

12:05 973. Jupyter Pandas GUI: Open Source Graphical User Interface Tools to Facilitate Using and Teaching Python Data Analysis, Visualization and Fitting. **J.H. Gutow**

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 974. Blending Data Structures and Organic Chemistry. S. Sharif

2:25 975. Jupyter Physical Science Lab: An Open Source Electronic Laboratory Notebook and Data Acquisition Platform for Educational Use. **J.H. Gutow**

2:45 976. Techniques and insights on teaching Python programming for chemists. **A.J. Bonham**

3:05 977. Python Scripting for Biochemistry and Molecular Biology. P.A. Craig

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 978. Teaching a Dedicated Programming Course for Chemistry Students. **C. Weiss**

4:10 979. A modular approach to introducing Python coding in a lower division analytical chemistry course. **E. Gillette**, J.A. Schafer, D.O. Dehaan

4:30 980. LibreTexts resources for teaching programming. **R.E. Belford**, J. Cuadros, S. Kim, E.C. Bucholtz

4:50 981. Programming Education Resources from the Molecular Sciences Software Institute. **J.A. Nash**

5:10 Closing Remarks.

WALC 2051

Trends in GOB Chemistry

L. D. Frost, Organizer, Presiding

C. E. Brown, L. Eaton, A. Murkowski, K. S. Owens, Presiding

8:00 Introductory Remarks.

8:05 982. Let's Teach Chemedistry!. W.D. Urban

8:25 983. Strategies for Teaching the B in GOB Chemistry. C.E. Brown

8:45 984. Development and Implementation of a COVID mRNA Vaccine Case Study for GOB Students in Remote and Hybrid Synchronous Teaching. **S. Dunham**

9:05 985. What I learned about introductory GOB by teaching practicing nurses. **L.D.** Frost

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 986. Using POGIL to increase student engagement and belonging in Allied Health both online and F2F. **A.B. Mahoney**, M. Garoutte

11:25 987. Pandemic Performance Pivot? Effects of Online Instruction in a GOB (General/Organic/Biochemistry) Course. **T.W. Stringfield**

11:45 988. Curricular and Pedagogical Strategies for Engaging GOB Students in Interdisciplinary Learning Activities. K.S. Owens, A. Murkowski

12:05 989. Teaching GOB students how take the lead in their own learning. **K.E.** Carrigan

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 990. Technology-based strategies to build a community of learning in a GOB course. **C. Patel**

2:25 991. Gamification of math content in a GOB course. B. Lybbert

2:45 992. Exploring how students connect symbolic equations, vocabulary and molecular-level representations in a first-semester GOB course. **M.E. Jewell**

3:05 993. The impact of emotions on pre-nursing students success in a GOB chemistry course. **C.E. Brown**, S. Nedungadi, A. Graves

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 994. Spike protein to ferritin: A scaffolded approach to develop a deeper appreciation of proteins. **S.A. Mason**

4:10 995. Using canola oil as a replacement for hazardous non-polar alkanes in testing the solubility and miscibility of organic and inorganic substances in the undergraduate GOB chemistry laboratory. **M.R. Korn**

4:30 996. GOB chemistry curriculum. S. Narayan

4:50 Panel Discussion.

5:10 Closing Remarks.

STEW 313

Educational Research in the High School Science Classroom

M. E. Jewell, M. L. Miller, Organizers, Presiding

8:00 Introductory Remarks.

8:05 880. Incorporating Action Research into the M.S. Chemistry – Chemistry Education program at South Dakota State University. **M.E. Jewell**, M.L. Miller

8:25 881. Teachers as researchers; implementing action research into the chemistry classroom. **R. Johnson**

8:45 882. Take "OAIM" and Fire: The OAIM Method for Procedure Writing and Its Effectiveness. **L. Detwiler**

9:05 Panel Discussion.

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 883. Understanding High School Students' Misconceptions about Chemistry using Particulate Level Drawings: Focusing on the Third Angle. **S. Smith**

11:25 884. Chemistry Content Knowledge And Verbal Analogical Reasoning As Potential Predictors Of Teachers' Quality Of Chemistry Concept Analogies. **S. Asenjo**

11:45 Panel Discussion.

12:25 Closing Remarks.

STEW 302

Functional Groups: Collaborative learning in organic chemistry and related subjects

J. L. Kiappes, Organizer, Presiding

8:00 Introductory Remarks.

8:05 911. Organic Chemistry Small-Group Term Project: Collaboration via Google Docs and Slides. **B.N. Churchill**, S.A. Dandekar

8:25 912. Incorporating groupwork and inquiry into organic chemistry lab. **M.A.** Vanalstine-Parris

8:45 913. Collaborative Huddle Engaging Magnification: CHEM. K. Johnson

9:05 914. Practice and Pitfalls of Using Student Roles in Organic Chemistry Collaborative Groups. **M. Barranger-Mathys**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 915. Conversations about flipping an organic chemistry classroom in the midst of a pandemic. K.M. Slunt, J.A. Asper

11:25 916. Collaborative activities encourage higher order thinking in biochemistry. **J. Fishovitz**

11:45 917. Collaborative workshops in introductory organic chemistry: Empowering students to solve chemical biology research questions. **J.L. Kiappes**

12:05 918. Peer-led small group discussions facilitate improved student learning in organic chemistry. J.A. Martinez, S. Davis, S.A. Dandekar

12:25 Closing Remarks.

STEW 307

Overarching undergraduate curriculum reform

B. B. Harmon, N. L. Powell, Organizers

D. R. Mulford, Organizer, Presiding

8:00 Introductory Remarks.

8:05 932. Implementation and assessment of a merged organic and general chemistry four-semester sequence for a health science degree. **X. Prat-Resina**

8:25 933. Chemistry Unbound at Emory University: Implementation and initial assessment results. **D.R. Mulford**, T.L. McGill, L.C. Williams

8:45 934. Flexible curricular reform: How different implementations can achieve the same goals. **D.R. Mulford**, N.L. Powell, B.B. Harmon

9:05 Panel Discussion.

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 935. The INSPIRE program: creating STEM undergraduate cohorts to promote interdisciplinary research and collaborations. W.E. Schatzberg

11:25 936. Adapting Creative Exercises to an Undergraduate Biochemistry Course Sequence. C. Nix, Y. Gerasimova, J.D. Caranto, D. Kolpashchikov, E. Saitta

11:45 937. Applied Science, an Alternative Approach to Chemistry Education. **J. Frost**

12:05 Panel Discussion.

12:25 Closing Remarks.

PMU

North Ballroom

General Posters 5

M. T. van Opstal, Organizer, Presiding

9:30 - 10:30

1007. Is the glassware "rinse three to four times with deionized water" clean enough?. **K. Qiu**, S. Wang

1008. Modes of undergraduate research; Which one serves students the best?. **C.A. Barta**

1009. Using in-class activities in a 1-semester biochemistry class to improve student engagement and learning. **R. Bouley**

1010. Withdrawn

1011. Practical examples of constructively responsive reading instruction to promote metacognition when learning industrial and environmental chemistry. **S.R. Esjornson**

1012. Is classroom engagement a predictor of overall course performance?. **R. Rosa Tavares Rodrigues**, D. King

1013. Team Science in Undergraduate Education. C. Andersen, J.P. Walker

1014. Learning Diversity, Equity, and Inclusion Through General Chemistry: Course Materials Development via Renewable Assignments. **S. Sun**, J. Kaiser, A. Meier

- **1015.** Stakeholder Interpretations of Scientific Information Literacy: Surveying Orange and Seminole County K-16 Educators. **B. Chiu**, C. Randles
- **1016.** Testing feedback: translating chemistry education research into classroom practice. **J.L. Schneider**, M.A. Teichert, D.G. Schreurs, J.M. Trate, C.J. Luxford, K.L. Murphy
- **1017.** Minoritized Students' Sense of Belonging in Post-secondary General Chemistry. **T. Hanson**
- **1018.** Project CASE (Collaborating Around STEM Engagement), An Outreach Program. **W.C. Deese**
- **1019.** 3D IMAGINE Creating 3D tactile images to teach STEM courses to visually impaired. **E. Hasper**
- **1020.** Determining the Color Changes of pH Indicators Using a Spectrophotometer. **H. Lee**, H. Kim
- **1021.** General chemistry students' perceptions of remote/online v. in-person education during the COVID-19 pandemic. **A. Ly**, M. Orgill
- **1022.** Engineering interactive learning in the general chemistry laboratories at Texas A&M University (TAMU). **A.C. Songok**, E. Lee, A. Altemose
- **1023.** Meaningful contrasts Investigating the Potential of Task Formats to Promote Students' Mechanistic Reasoning in Organic Chemistry. **D. Kranz**, M. Schween, N. Graulich
- **1024.** Teaching Organic Chemistry Undergraduate Laboratory Curriculum by themebased sunscreen project. **D. Butani**, M. Nelson, R.S. Muthyala
- **1025.** Using POGIL and 3D Models to Teach Orbital Hybridization in Undergraduate General Chemistry. **R.S. Thompson**, S.A. Toledo
- **1026.** Meeting students' needs? Implementing reading interventions in introductory chemistry and its impact on student performance. **F. Diawara**
- **1027.** Investigating Doctoral Student-Advisor Relationships in the Chemical Sciences via Cluster Analysis and The Effect on Students' Career Plans. **T. Stevens**, M. Eagle, J. Schlatterer

- **1028.** Discourse analysis of student thinking about molecular polarity when offered sequential or simultaneous exemplars with and without electrostatic potential maps. **C.L. Lavoie**, C.F. Bauer
- **1029.** Analysis of Chemistry Card Games impact on student exam performance. **M. Clark**, J. Cotter
- **1030.** Beyond the teaching lab: A lecture teaching fellowship for graduate students. **S. Moon**
- **1031.** Culturally Relevant and Socially Responsible Design of Organic Chemistry Laboratories Curriculum. **C.L. Velez**
- **1032.** A Physical Chemistry course for non-Physical Chemists. Active learning strategies using Python and Jupyter Notebooks. **X. Prat-Resina**
- **1033.** Vitamin C kinetics: Using time-release tablets to rethink a classic experiment. **D.E. Gardner**, N. Mugande
- **1034.** Investigating the differences in use of Learning Assistants on students' chemistry identity development. **G.S. Rophail**, J.H. Carmel
- 1035. Speed and Accuracy vs. Cost: A Solids Analysis Investigation. D.F. Fraley
- **1036.** Teaching and Encouraging Science Scholars through Social Justice. **M. Harrison**, K. Boyd, M. Magrakvelidze, C. Nielsen
- **1037.** Using case studies in Chemistry Education: The examples of Water Resources and Mining. **M. Silva de Lima**, S. Queiroz, L.L. Pozzer
- **1038.** Creating a Course-based Undergraduate Research Experience (CURE) for the Inorganic Lab. **L.C. Williams**, A. Saha

WALC 1018

Assessment Instruments: Design, Development, and Evaluation

M. Atkinson, J. Barbera, Organizers, Presiding

11:00 Introductory Remarks.

11:05 1039. Exploring the factor structure of the Meaningful Learning in the Laboratory Instrument (MLLI). **E.B. Vaughan**, J. Barbera

11:25 1040. An investigation of the internal structure of the Meaningful Learning in the Laboratory Instrument. **K.J. Linenberger Cortes**, R. Spruiell, M.L. Head, G. Taasoobshirazi

11:45 1041. Extending the Utility of the Chemistry Self-Concept Inventory in the Urban High School Setting Using Rasch Modeling. **Y. Chen**, S.M. Werner, M. Stieff

12:05 1042. Evaluation of the Academic Motivation Scale-Chemistry via contrasting Likert-scale and rank-sort approaches. Y. Wang, **S.E. Lewis**

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 1043. Design and evaluation of a measure of student engagement in active learning activities. **N. Naibert**, J. Barbera

2:25 1044. Development of a chemistry-specific mindset instrument. **D. Santos**, S. Mooring, J. Barbera

2:45 1045. Developing the Intelligence Mindset in the Chemistry Laboratory Assessment. **S. Fullington**, S. Bretz

3:05 1046. Developing and Validating a Survey on Students' Experiences and Understanding of the Culture of Scientific Research and Racial Identity. **P. Vincent-Ruz**, K. Hosbein, J.L. Dewey, R.S. Phillips

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 1047. Collecting response process validity evidence in chemistry education research. **J.M. Deng**, N. Streja, A.B. Flynn

4:10 1048. Instrument development and use in Chemistry Education Research and Practice (2010 - 2021). **K. Lazenby**, T. Marcroft, K. Tenney, R. Komperda

4:30 1049. BioMolViz: A collaborative community for designing assessments of biomolecular visual literacy. **D.R. Dries**, R. Acevedo, P.S. Mertz, W.R. Novak, S. Engelman, J.T. Beckham, K. Procko

4:50 1050. Building Assessment Capacity in Chemistry Education - The CHemistry Instrument Review and Assessment Library (CHIRAL) Project. **J. Barbera**, **J. Harshman**, **R. Komperda**

5:10 Closing Remarks.

STEW 202

Moving towards anti-deficit framing in our research and practice (#AdvancingEquityinCER)

K. Hosbein, M. E. Howe, C. Stachl, *Organizers* V. R. Ralph, S. M. Werner, *Presiding*

11:00 Introductory Remarks.

11:05 1051. One scholar's journey to reframe previous work to anti-deficit, equity-centered research. **S.M. Werner**

11:25 1052. Integrating asset-framing with ungrading in introductory chemistry courses: A growth-filled journey. **C. Sorensen-Unruh**

11:45 1053. Thinking with agential realism and variation theory to investigate representational practices in biochemistry teaching and learning. **S. Wang**, R. Sung, T.J. Bussey

12:05 Panel Discussion.

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 1054. Asset-Based and Anti-Deficit Methods for the Iterative Evaluation of a Professional Development Workshop. **J. Tashiro**, S. Pazicni

2:25 1055. Using Intersectionality as a heuristic in an Institutional Ethnographic Investigation: Implications for equity research in STEM education. **C.E. Wright**

2:45 1056. Society's educational debts due to racism and sexism in chemistry student learning. **J. Nissen**, B. Van Dusen, R. Talbot, H. Huvard, M. Shultz

3:05 Panel Discussion.

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 1057. Promoting an equity-minded Approach to Advancing racial equity in chemistry education. **j. collins**

4:10 1058. Investigating chemistry culture from the perspective of PEERs. C. Ngai

4:30 1059. Impact of science specialized first-year course in the development of first-year Science students. **Z.S. Wilson-Kennedy**, J. Zhan, **R. Davis**

4:50 Panel Discussion.

5:10 Closing Remarks.

STEW 206

Process Oriented Guided Inquiry Learning (POGIL) in the classroom & laboratory

M. D. Perry, *Organizer*L. E. Parmentier, *Presiding*

11:00 Introductory Remarks.

11:05 1060. The POGIL Project: Exploring new frontiers. M.D. Perry

11:25 1061. POGIL Activity Clearinghouse. **B.M. Fetterly**, M. Dubroff, C.L. Fish, M.P. Garoutte, S. Garrett-Roe, E.M. Kowalski, M.S. Reeves, T.D. Shepherd, C.M. Teague, M.T. van Opstal

11:45 1062. Implementation and assessment of the flipped classroom enhanced POGIL curriculum on learning outcomes and attitudinal constructs of first-generation underrepresented minority (URM) students in gateway undergraduate college chemistry courses to decrease equity gaps. **M. Shapiro**, D.M. Solano, J. Bergkamp, G.A. Lopez, S. Waller, D.R. Rosenthal, X. Da Silva Tavares, C. Butler

12:05 1063. Gamified Process Oriented Guided Inquiry Learning Activities (GpA) in a Large Enrollment Chemistry Course. **N. Turner**, T. Gupta, M.E. Jewell

12:25 Closing Remarks.

12:30 Lunch.

2:00 Introductory Remarks.

2:05 1064. Implementing cyber POGIL and PLTL to improve resilience of teaching chemistry in Puerto Rico. **C. Rivera-Maldonado**, C. Peraza González, L. Méndez-Torres

2:25 1065. Small group interactions in a hybrid POGIL-based general chemistry class. **S. Fateh**, Z. Kirbulut, J. Reid, O. Ayangbola, A.J. Phelps, G. Rushton

2:45 1066. Student centered collaboration online in an introductory chemistry course. **L. Eaton**

3:05 1067. Synchronous hybrid POGIL teamwork: Implementation and impact on student learning in General Chemistry. **S.U. Dunham**

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 1068. Flipping a traditional 'cookbook' style lab manual into a POGIL style lab manual. **T. Hanson**

4:10 1069. Melting thermodynamics and molecular structure: a POGIL laboratory activity. **J.P. Hagen**

4:30 1070. Creating Engaging General Chemistry Polymer Laboratories: POGIL Model and Student Voice. K. Mardis, **A.G. Van Duzor**

4:50 Panel Discussion.

5:10 Closing Remarks.

STEW 302

Active Learning in Organic Chemistry

A. Leontyev, Organizer, Presiding

2:00 Introductory Remarks.

2:05 1071. Development of a poly(lactic acid)/nylon 6-6 polymer synthesis experiment for organic chemistry. **S.A. Henrie**, J.H. Davis, N.C. Dalton

2:25 1072. Gamification in the Organic Laboratory as an Answer for Apathy and Pandemic. Going Full Circle. **C. Arias**

2:45 1073. Chem101 in Organic Chemistry II: Part of the Kitchen Sink approach. **P. Wiget**

3:05 1074. Augmented reality tools for teaching organic chemistry mechanisms. **M. McColgan**, N. Stagnitti, J. Marotta, L.J. Tucker

3:25 Closing Remarks.

BRWN 1154

Beyond the Laboratory Teaching Assistantship: How can we prepare our graduate students for teaching outside of the laboratory?

R. Broyer, *Organizer* S. N. Knezz, J. A. Parr, *Presiding*

2:00 Introductory Remarks.

2:05 1075. Creating professional development to mitigate teaching anxiety and discomfort in graduate teaching assistants. **A. Sona**, M. Kwaschyn, E. Saitta

2:25 1076. The influence of community on graduate student socialization as teachers in the chemical sciences. **C. Schnoebelen**, N. Suarez, S. Brydges

2:45 1077. Teaching More than Teaching: Evolving Our General Chemistry TA Training Program to Address the TA's Role in the Student's Holistic Experience. **J.J. Weaver**, S. Block, L.B. Lamont, L. Gustin, J.S. Hamers, t. pesavento, J.M. Trate, C. Wilkinson

3:05 1078. Pandemic policies bring endemic effects: Lasting changes in the post-COVID classroom. **C. Barrett**, R. Broyer

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 1079. AcademiNext: Emerging Faculty Development Program. **R. Broyer**, J.A. Parr

4:10 1080. A classroom teaching fellowship: The graduate student's perspective. **S. Moon**

4:30 1081. The Institute for Future PUI Faculty: A case study about participants' career motivations and perceptions during Lafayette College's new professional training program. **M.A. Bertucci**

4:50 Panel Discussion.

5:10 Closing Remarks.

STEW 204

Cognitive resources for understanding students: How to and what for?

A. C. Moon, S. Mooring, Organizers, Presiding

2:00 Introductory Remarks.

2:05 1082. Why Assumptions About the Nature and Structure of Knowledge Matter for Research and Teaching. **J. Rodriguez**

2:25 1083. Organic chemistry students' cognitive resources for making inferences about stability. **F. Rotich**, C.C. Onokalah, L. Wright Ward, M. Popova

2:45 1084. Investigating undergraduate chemistry students' cognitive resources for reasoning about graphical representations. **N.M. Becker**, J. Rodriguez, S.J. Hansen

3:05 1085. Exploring Epistemic Resources in Research and in Teaching. **R.M. Kelly**, J. Kim

3:30 Break.

3:45 Introductory Remarks.

3:50 1086. Investigating how molecular orientation affects students' cognitive resources for identifying reflection and rotation symmetry elements. **O. Crandell**, S. Pazicni

4:10 1087. How students predict SN1, SN2, E1, and E2 reaction mechanisms through the lens of coordination class theory. **K. Hunter**, N.M. Becker

4:30 1088. "To Be Honest, I Didn't Even Use the Data": Organic Chemistry Students' Engagement in Data Analysis and Interpretation. **J. Zhou**, A.C. Moon

4:50 1089. Exploring Student Mechanistic Reasoning through the Evidence-Based Design of Carbonyl Activation Case Studies. **S. Petritis**, E.L. Day, M. Cooper

5:10 Closing Remarks.

STEW 311

Exploring the implementation of Peer-Led Team Learning and the diverse outcomes that result

C. F. Bauer, K. A. Bowe, S. E. Lewis, Organizers, Presiding

2:00 Introductory Remarks.

2:05 1090. Born in the USA - Exploring the PLTL Model in U.K Higher Education. **L. Howell**, R. Shahid

2:25 1091. Transferrable skills gained from experience as a peer-leader in a PLTL program: A mixed-methods study of LinkedIn users. **A. Chase**, D. Maric, A.S. Rao, G. Kline, P. Varma-Nelson

2:45 1092. Using Undergraduate Peer Leaders in Establishing an Inclusive Classroom. **R. Frey**, M. Jareczek, H.L. Torres

3:05 1093. PLTL students as partners in creating learning activities for cross-disciplinary scientific and mathematical practices. **C.F. Bauer**, M. Aikens, J. Kustina, D. Meredith, K.A. Bowe, A. Gaudreault, N. Altindis

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 1094. Can artificial intelligence (AI) be used to monitor and enhance cPLTL workshops?. **P. Varma-Nelson**, K. DSouza, S. Mukhopadhyay, S. Fang, L. Zhu

4:10 1095. An evaluation of online Peer-Led Team Learning to promote student success. **J. Young**, S.E. Lewis

4:30 1096. Embedding Peer Educators into the General Chemistry Classroom. **R.W. Clark**, K.E. Leach, T.E. Goyne, J.S. Holt, T.K. Armstrong

4:50 1097. If all you have is covalent bonding, every substance is a molecule: Longitudinal study of student enactment of covalent and ionic bonding models. **K.A. Bowe**, C.F. Bauer, Y. Wang, S.E. Lewis

5:10 Closing Remarks.

STEW 313

Molecular-Level Animations in Secondary Chemistry: VisChem Teacher Showcase

R. Tasker, E. J. Yezierski, *Organizers* K. Q. Magnone, M. M. Wu, *Presiding*

- **2:00** Introductory Remarks.
- **2:05 1098.** Why does ice float? Using VisChem animations to prompt deeper thinking about an everyday phenomenon. **K. Dempsey**, M.M. Wu, K.Q. Magnone, J. Ebert, E.J. Yezierski
- **2:25 1099.** What's in the bubble: Connecting macroscopic observations to changes in particle arrangement. **J. Hansen**, M.M. Wu, K.Q. Magnone, J. Ebert, E.J. Yezierski
- **2:45 1100.** Connecting the intermolecular dots: Using the VisChem Approach to address student misconceptions of intermolecular interactions and particulate chemical modeling. **R. Johnson**, M.M. Wu, K.Q. Magnone, J. Ebert, E.J. Yezierski
- **3:05 1101.** May the force be with you: Using VisChem animations to teach intermolecular forces. **A.J. Hanson**, M.M. Wu, K.Q. Magnone, J. Ebert, E.J. Yezierski
- **3:25** Closing Remarks.
- 3:30 Break.
- 3:45 Introductory Remarks.
- **3:50 1102.** Inquiry, electrolytes, and particle-level animations: Helping students represent ions in aqueous solutions. **K. Curtis**, M.M. Wu, K.Q. Magnone, J. Ebert, E.J. Yezierski
- **4:10 1103.** Helping students visualize and understand precipitation reactions using drawings and animations. **S. Richardson**, M.M. Wu, K.Q. Magnone, J. Ebert, E.J. Yezierski
- **4:30 1104.** Using the VisChem Approach to help students understand the role of electrostatic attractions between oppositely charged ions in ionic substances. **A. Mital**, M.M. Wu, K.Q. Magnone, J. Ebert, E.J. Yezierski
- **4:50 1105.** Exploring the logistics of implementing the VisChem Approach in a chemistry curriculum: Start with misconceptions. **C.E. Rutter**, M.M. Wu, K.Q. Magnone, J. Ebert, E.J. Yezierski
- **5:10** Closing Remarks.

Why and/or how do the flipped classroom influence student learning and faculty success in chemistry classes and laboratories?

R. S. Perera, Organizer, Presiding

2:00 Introductory Remarks.

2:05 1106. Flipping the Large (and Small) Undergraduate Lecture: Strategies and Lessons Learned. **A. Herring**, M.J. Bojan, L. Funari

2:25 1107. Flipped Classroom, Active Learning, and Enhanced Feedback – A Classroom to Laboratory and Back Approach. **D.M. West**

2:45 1108. Using PhET Simulations as Exploratory Models: Leveraging the Flipped Classroom Structure to Build Conceptual Understanding in a Large Enrollment General Chemistry Course. **J.F. Eichler**, E.J. Yezierski

3:05 1109. Exploring Student perspectives of the flipped classroom pre-class video. **N. Burrows**

3:25 Closing Remarks.

3:30 Break.

3:45 Introductory Remarks.

3:50 1110. Flipped Across the Curriculum. L.M. Ponton

4:10 1111. How to Look for Flippable Moments in Your Class and Backward Design Process.. **R.S. Perera**

4:30 Panel Discussion.

5:10 Closing Remarks.

Equitable and Student-Centered Assessments

J. Brown, M. Farabaugh, Organizers, Presiding

3:45 Introductory Remarks.

3:50 1112. Assessment Design in General Chemistry II. P. Muisener

4:10 1113. Mastery-based grading across a first-year chemistry sequence at Grand Valley State University. **B.K. DeKorver**, S. Clark, J. Henderleiter, N.J. Barrows

4:30 1114. Ungrading in the Chemistry Lab: Using Digital Notebooks and Team Dashboards to Improve Formative Feedback. **P. Gittins**

4:50 1115. Toward Equitable Assessment of English Language Learners in Chemistry: Identifying Challenging Features in Assessment Items. **E. Lee**, M. Orgill

5:10 Closing Remarks.

STEW 306

Methods for Characterizing Epistemology in Chemistry Education Research

K. DeGlopper, Organizer

R. Stowe, Organizer, Presiding

3:45 Introductory Remarks.

3:50 1116. Characterizing organic chemistry instructors' teaching-related epistemologies. **K. DeGlopper**, R. Russ, P. Sutar, R. Stowe

4:10 1117. Characterizing In-the-Moment Learning in General Chemistry through Practical Epistemology Analysis. **J. Karch**, J. Pierre-Louis, D. Strange, I. Caspari

4:30 1118. Using a scaffolded critiquing task to promote engagement in metamodeling knowledge: Analyzing how students reason with and about chemical bonding models. **V. Bapu Ramesh**, J. Rodriguez, N.M. Becker

4:50 1119. A research methodology to explore students' guiding epistemology and conceptualization of disciplinary context when problem solving. **A.P. Parobek**, P.M. Chaffin, M.H. Towns

5:10 Closing Remarks.

THURSDAY

WALC 3138

Oral communication in the chemistry curriculum

G. Crawford, K. D. Kloepper, Organizers, Presiding

8:00 Introductory Remarks.

8:05 1150. Communication skills enhancement through a variety and progression of presentations. **R. Morgan Theall**

8:25 1151. Enhancing oral communication: Storytelling in the chemistry classroom. **E. Vickers**

8:45 1152. Developing informal technical communication: Oral lab reports in organic chemistry. **L. Wysocki**, S. Drury

9:05 1153. Reflecting on increasing oral communication opportunities and assessments in an inorganic chemistry laboratory. **J.L. ODonnell**, J.W. Karr

9:25 Closing Remarks.

WALC 3122

3D Printing in Chemical Education: Engaging Students and Creating Tools for Active Learning

L. A. Porter, Organizer, Presiding

8:00 Introductory Remarks.

8:05 1120. 3D Printing Workshops: A fun and hands on way of aiding student understanding of representation, shape and chirality. **R. Blackburn**, R. Britton

8:25 1121. 3D Printed Models of Atomic, Hybrid, and Molecular Orbitals. R. De Cataldo, K.M. Griffith, S. Flagg, R. King, **K.H. Fogarty**

8:45 1122. Training Exercises for 3D Printed Space-Filling Molecular Models. N. Nolan, H. Martin, **J.K. Klosterman**

9:05 1123. Integration of 3D-Printed Optomechanics Kits into an Advances Instrumental Analysis Course. **T.J. Bixby**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 1124. Improving laboratory education with 3D-printable smartphone spectrophotometers. **A.W. Smith**

11:25 1125. MakerLab: A New Course in Computer-Aided Design, Coding, and 3D Printing for Chemistry Students. **L.A. Porter**

11:45 1126. Developing an Entrepreneurship Infused Digital Fabrication Course at Millikin University. **K.N. Knust**

12:05 Panel Discussion.

12:25 Closing Remarks.

WALC 1132

Active learning implementation

D. B. King, Organizer, Presiding

8:00 Introductory Remarks.

8:05 1127. Orgo for the 21st Century: A Student-Centered Course on Advanced Reactivity. **A. Neuman**, A. Scharf

8:25 1128. Lessons from flipped classroom incorporation in a large enrollment inorganic lecture course. **M.R. Porter**

8:45 1129. Withdrawn

9:05 1130. Precursor to Active Learning: Engaging Students with Lightboard Videos. **B. Woods**, R. Perkins

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 1131. The use of surveys to identify self-learned material to open time for inclass activities. **M. Delgado**, F. Germain

11:25 1132. Using Quasi-active Learning to Improve Students' Learning in Chemistry. **Y. He**

11:45 1133. What can we learn from the personal characteristics of instructors who implement evidence-based instructional practices?. **B. Morgan**, M. Weinrich

12:05 1134. Using national survey data to transform department instructional practices: Adoption of active learning. **B.J. Yik**, J.R. Raker, M.N. Stains, N. Apkarian, C. Henderson, M.H. Dancy, E. Johnson

12:25 Closing Remarks.

WALC 3127

Encoiling Research and Practice to Understand and Improve Inorganic Chemistry Education

J. M. Pratt, J. L. Stewart, Organizers, Presiding

8:00 Introductory Remarks.

8:05 1135. An Alternative to Using *d*-orbitals to Describe Bonding in Main Group Compounds. **S. Pazicni**

8:25 1136. Supporting the inclusion of solid-state chemistry in introductory courses. **J.T. Race**, P. Woodward, T.M. Clark

8:45 1137. Students conceptions on conductivity in solids in foundations level inorganic chemistry. **A.K. Bentley**, B.A. Reisner, J.M. Pratt, J.L. Stewart, J. Hallers, J.R. Raker, S. Lin, S.R. Smith

9:05 Panel Discussion.

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 1138. Quick Writes for High Level Comprehension. J.F. Dunne

11:25 1139. Literature-based problem sets and exams questions in the inorganic curriculum. J.L. ODonnell

11:45 1140. Lessons learned from a utility-value intervention in inorganic chemistry. Y. Wang, **S.E. Lewis**

12:05 1141. A preliminary study on the strategies that students use to solve complete-the-reaction inorganic tasks. **H.P. Lundien**

12:25 Closing Remarks.

WALC 1018

Fun-tastic Games and How to Make/Use Them

T. D. Gaines, Organizer, Presiding

R. M. Doughty, P. Lee, Z. Thammavongsy, Presiding

8:00 Introductory Remarks.

8:05 1142. Acids to acids: An Apples to ApplesTM inspired game to aid in pKa identification. **A.L. Courtney**

8:25 1143. Escape Room Mania! Incorporating escape rooms in the classroom and the teaching laboratory. **M.J. Vergne**

8:45 1144. Atoms to Atoms: A game-based classroom activity to check for understanding prior to a formal exam. **B. Miller**

9:05 1145. Project Lockbox: Adapting an escape-room-style activity to different content types, course levels, and class sizes. **R.M. Doughty**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 1146. Chemistry Games Tailored for the Inorganic Chemistry Classroom. **Z. Thammavongsy**

11:25 1147. Catalyzing Chemical Education with REACT!TM - The Organic Chemistry Board Game. **K.C. Wong**, P.V. Juthani, B. Ahmed, D.A. Rosenthal, J. Wang, K.H. Chan, M. Chen, A. Gupta, M.O. Mostaghimi, H. Pan

11:45 1148. Development of GpA: An Active Learning Matching Card Game. **N. Turner**, T. Gupta, M.E. Jewell

12:05 1149. Use of Chemistry Card Games in the classroom to enhance learning and retention. **M. Clark**, J. Cotter

12:25 Closing Remarks.

WALC 3087

Research in Chemistry Education

M. Anzovino, J. H. Carmel, Organizers, Presiding

8:00 Introductory Remarks.

8:05 1154. Deploying 21st century skills in the learning and teaching of chemistry: where do Nigerian serving and preservice teachers stand?. **K. Oloruntegbe**

8:25 1155. An Analysis of the Teaching Experiences of Instructors Within One Chemistry Department During the COVID-19 Pandemic. **L. Wright Ward**, J. Hoang, M. Popova

8:45 1156. Understanding of Virtuosity in Science Teaching and Developing Virtuoso Science Teacher: A Comparative Case Study Of Understanding Excellence In Teaching Practice. **e. ozyurek**

9:05 Panel Discussion.

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 1157. Use Of Advance Organiser On Gender Variables In Teaching Chemistry In Secondary Schools In Nigeria. **A.O. OMONIYI**

11:25 1158. Network analysis to investigate citation and assessment instrument networks. K. Lazenby, T. Marcroft, K. Tenney, R. Komperda

11:45 1159. Results from a national survey on instrumentation use in undergraduate laboratory courses. **M. Connor**, J.R. Raker

12:05 1160. Does a spectrum of STEM Education Research exist?. R. Lindell

12:25 Closing Remarks.

WALC B058

Using Computational Chemistry to Improve Student Understanding of Chemical Reactions

B. J. Esselman, N. J. Hill, Organizers, Presiding

8:00 Introductory Remarks.

8:05 1161. The Compute-to-Learn Pedagogy. D.M. Hassan, K. Lenn

8:25 1162. Molecular modeling of chemical reactions from high school to physical chemistry courses. **L. Tribe**

8:45 1163. Undergraduate Chemistry Lab - Using Ab Initio Calculations to Predict Chromatographic Outcomes. **R. Karugu**

9:05 1164. Analyzing infrared and NMR spectra of organic molecules with WebMO and Gaussian. **K. Range**

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 1165. Implementing computational chemistry in large organic chemistry laboratory classes: Methodology, exercises, and expanding usage to other courses. **L.M. Goldman**, A.B. McCoy, S. Stoll

11:25 1166. Determining and Rationalizing the Stereochemical Outcome of the Reduction of Benzoin with Spectroscopy and Computational Chemistry. **B.J. Esselman**, N.J. Hill, A. Ellison

11:45 1167. Integrating computational chemistry into organic lecture and problem solving sessions. **A. Ellison**, B.J. Esselman, R. Stowe

12:05 Panel Discussion.

12:25 Closing Remarks.

WALC 2087 Utilizing scientific literature to develop reading comprehension skills, writing efficacy, and content knowledge.

C. Johnson, M. M. Morgan, E. P. Wagner, Organizers, Presiding

8:00 Introductory Remarks.

8:05 1168. Tracking information literacy in science students: reinforcing skills through literature-based assignments in General Chemistry and Biochemistry. **J.D. Knight**, M. Bruehl, D. Pan, S. Budd

8:25 1169. Two Literature Review Projects for Organic Chemistry. L.J. Silverberg

8:45 1170. Teaching Students to Read the Primary Literature Using POGIL Activities. **T.A. Murray**

9:05 1171. Developing Scientific Writing Abilities Through Guided and Active Learning Cycles in the Physical Chemistry Laboratory. **C. Johnson**, E.P. Wagner

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 1172. Writing Skills Development in General Chemistry using Scientific Literature. **M.M. Morgan**, G. Murray, C. Johnson, E.P. Wagner

11:25 1173. Development of a scientific writing course for chemistry and biochemistry majors. S. Pierce

11:45 1174. A Long Term Project is an Excellent Way to Add the Primary Literature into a Lab Course.. **D.J. Slade**

12:05 1175. Switching to Specs: The Process of Modifying Writing-Intensive Upper Division Chemistry Courses to Use Specifications Grading. **S. Mang**

We want YOU for the US National Chemistry Olympiad!

M. Barranger-Mathys, J. Houck, Organizers, Presiding

8:00 Introductory Remarks.

8:05 1176. The first thirty years of service as the Local Section Coordinator for the National Chemistry Olympiad. **M.M. Kozik**

8:25 1177. The US National Chemistry Olympiad in the Philadelphia Section of the ACS - Progress and Challenges. **C.P. McClure**, L. Grande

8:45 1178. Annotating the past USNCO exams – a group volunteering project. **S.** Chen

9:05 Panel Discussion.

9:25 Closing Remarks.

9:30 Break.

11:00 Introductory Remarks.

11:05 1179. International Chemistry Olympiad theoretical tasks: Classroom tools and insights into assessment design. **J.L. Kiappes**

11:25 1180. Mentoring for the USNCO: Commitments and Rewards. M. Barranger-Mathys

11:45 Panel Discussion.

Media in Teaching and Learning Chemistry

W. J. Donovan, Organizer, Presiding

11:00 Introductory Remarks.

11:05 1181. Using the C-SPAN Archives in chemistry classes to build civic understanding and engagement. A. Langrish, W.J. Donovan

11:25 1182. Science Literacy and Real-World Chemistry Content. C. Suh

11:45 1183. Evolving with measurable impact from sage-on-a-stage to guide-on-the-side. **B. Meinzer**

12:05 1184. PowerPoint Reimagined: Fueling Student Engagement. K.D. Revell